SECAP

SYSTEM EVALUATION AND CAPACITY ASSURANCE PLAN

FINAL DRAFT REPORT

Table of Contents

EXECUTIVE SUMMARY

Background and SECAP Objectives 1
LRWU Service Area and Collection System 1
Design Flows / Design Storm 1
Hydraulic Modeling and Capacity Analysis 4
Alternative Analysis 5
Implementation Recommendations 8
Infiltration / Inflow Abatement 8
Citizen Participation 10
Other Recommendations 10
SECTION 1 - INTRODUCTION
Background and Master Plan Objectives 1-1
LRWU Service Area 1-1
LRWU Wastewater Collection System. 1-1
Scope of Master Plan Update 1-3
Report Organization 1-4
SECTION 2 - EXISITNG AND FUTURE FLOWS
Flow Monitoring Summary 2-1
Flow Monitoring Data 2-1
Observed Rainfall Data 2-2
Exiting Model Inflows 2-2
Residential and Employment Wastewater Inflows 2-3
Wastewater Diurnal Profiles 2-4
Groundwater Infiltration 2-4
Wet Weather Infiltration / Inflow 2-5
Design Flows 2-6
Residential / Employment Flow Projections 2-6
Groundwater Infiltration Projections 2-6
Design Flow Condition 2-7
Design Rainfall Event 2-7
Design Wet Weather I/I 2-9
SECTION 3 - MODELING AND CAPACITY ANALYSIS
Hydraulic Model Description 3-1
Sewer Network 3-1
Collection Systems Areas 3-2
Pump Stations 3-2
Wastewater Treatment Plants 3-5
Interstate Gate Park Facility 3-5
Model Calibration 3-5
Model Calibration Process 3-5
Design Storm Calibration 3-6
Hydraulic Analysis 3-9
Hydraulic Model Assumptions. 3-9
Model Inflows 3-9
Hydraulic Model Results 3-9
Hydraulic Analysis - Description Problems 3-10
SECTION 4 - ALTERNATIVE IMPROVEMENT PROJECTS
Background 4-1
Identification of Wastewater System Alternatives 4-2
Increased Conveyance Capacity 4-2
Wet Weather Storage Capabilities 4-7
Additional Treatment Plant 4-7
Alternative Improvement Projects 4-7
Costs 4-7
Alternatives 4-7
City and Public Participation 4-17
Selected Alternative 4-18
SECTION 5 - RECOMMENDED IMPROVEMENT PLAN
Project Costs 5-1
Project Prioritization and Schedule 5-1
Implementation Recommendations 5-4
SECTION 6 - INFILTRATION / INFLOW ABATEMENT
Infiltration/Inflow Reduction Plan 6-1
Sources of Infiltration and Inflow 6-2
Challenge of Effective I/I Abatement 6-2
Flow Targeted I/I Reduction 6-4
Emergency, Corrective, and Preventive Maintenance 6-5
Private Property Programs 6-10
Potential I/I Reduction Methods 6-10
Recommendations 6-11
SECTION 7 - CITIZEN PARTICIPATION
Citizens Advisory Group Overview 7-1
Review of Alternatives 7-1
Recommendations 7-2

SECTION 8 - OTHER RECOMMENDATIONS

Additional Options 8-1
Background for North Little Rock WWTP Option 8-1
Description of North Little Rock WWTP Option 8-1
White Oak Bayou WWTP 8-2
Additional Option Improvements 8-2
Benefits of North Little Rock Option 8-2
Storage Detention Facility 8-2
Landfill Site Storage Option 8-2
Storage Facility Operation 8-4
Benefits of Landfill Storage Option 8-4
Recommendations for Options 8-4

APPENDICES

Appendix A - Model Calibration Data
Appendix B - Model Data for Alternatives, Books I \& II
Appendix C - Project Cost Estimates
Appendix D - Citizens Advisory Workbook
Appendix E-Adams Field Wastewater Treatment Plant, Capital Improvement Plan Options
Appendix F - Technical Memorandum 4, Preliminary Evaluation of the Fourche Creek WWTP

Appendix G - Engineering and Cost Report for Little Maumelle River Subbasin Sewerage Study

TECHNICAL MEMORANDA (bound separately)

Appendix H - Data Inventory / Validation
Appendix I - Flow Monitoring
Appendix J - Model Building
Appendix K - Model Inflows
Appendix L - Model Calibration
Appendix M - Pump Station Evaluation
Appendix N - Large Diameter Sewer Investigation

ADDITIONAL INFORMATION

Appendix O - Adams Field WWTP:
Discharge Monitoring Reports, Nov. 2000 thru Sept. 2001
Response to Comments Final Permit Decision, July 2001
Appendix P - Fourche Creek WWTP:
Discharge Monitoring Reports, Nov. 2000 thru Sept. 2001
NPDES Permit, March 1997
Appendix Q - Ordinance Establishing a Schedule of Sewer Rates for Little Rock, April 2000
Appendix R - 2001 Budget Spread Sheets for Cash and Income

LIST OF TABLES

Table No. Title Page
1 Capitol Costs for Alternative A1. 6
2.1 Dry and Wet Weather Event Summary 2-1
2.2 Average Building Footprint Areas 2-3
2.3 Design Rainfall Event Details 2-8
3.1 Event Information 3-6
4.1 Proposed Trunk Upgrades 4-4
4.2 Estimated Capital Costs for Alternative A1 4-10
4.3 Estimated Capital Costs for Alternative B1 4-12
4.4 Estimated Capital Costs for Alternative B2 4-12
4.5 Estimated Capital Costs for Alternative C1 4-14
4.6 Estimated Capital Costs for Alternative C2 4-17
4.7 Evaluation Criteria 4-19
4.8 Evaluation Matrix 4-20
5.1 Schedule for Trunk Line Improvements 5-2
5.2 Schedule for Pump Station Improvements 5-3
5.3 Schedule for Treatment Plant Improvements 5-4
5.4 System Evaluation and Capacity Assurance Plan 5-5
15-Year Implementation Schedule and Costs
6.1 Estimated Sewer Pipe Service Life 6-9
7.1 Summary of Options Presented to the Citizens Advisory Group $7-3 \& 7-4$

LIST OF FIGURES

Figure No. Title Page
1 Little Rock Wastewater Service Area 2
2 Alternative A1 7
3 Annual Expenditures for Capacity Assurance Plan Improvements 9
4 Annual Expenditures by Type of Construction 9
1.1 Little Rock Wastewater Service Area 1-2
2.1 Total Rain Depths (in) from 03/15/2000 to 04/28/2000 2-2
2.2 Wastewater Diurnal Profiles 2-4
2.3 Rainfall Hyetograph for Design Rainfall Event (Event E) 2-8
2.4 Total Rain Depths (in) for Design Rainfall Event (Event E) 2-9
3.1 Modeled Network 3-3
3.2 Service Areas and Sub-Basins 3-4
3.3 Historical Flooding Due to Rainfall 3-7
3.4 Modeled Overflows, Design Event 3-8
3.5 Depth to Diameter Rations, DWF Event X 3-11
3.6 Depth to Diameter Ratios, Design Event 3-12
4.1 Proposed System Upgrades 4-3
4.2 Alternative A-1 4-9
4.3 Alternative B-1 4-11
4.4 Alternative B-2 4-13
4.5 Alternative C-1 4-15
4.6 Alternative C-2 4-16
5.1 Annual Expenditures for Capacity Assurance Plan Improvements 5-6
5.2 Annual Expenditures by Type of Construction 5-6
5.3 SECAP Projects, Key Location Map 5-8
6.1 PWWF to DWF Analysis 6-4
6.2 Ratio of Peak WWF to Average DWF 6-6
6.3 High WWF/DWF Ratio Compared to Proposed System Upgrades. 6-7
8.1 Location Map for Additional Options 8-3

Executive Summary

This report presents the results and recommendations of the System Evaluation and Capacity Assurance Plan (SECAP), for Little Rock's wastewater collection system. The report prepared by MWH under an agreement with the Little Rock Sewer Committee dated June 28, 2000.

BACKGROUND AND SECAP OBJECTIVES

This report incorporates information from previous engineering studies for the Adams Field and Fourche Creek Wastewater Treatment Plants (WWTP), analysis for Little Maumelle Sewer Basin, and provides a comprehensive evaluation of the current and future needs of the entire Little Rock Wastewater Utility (LRWU) collection system. The overall objectives of the SECAP study are as follows:

- Develop a hydraulic model of the trunk sewer system.
- Use the model to identify existing capacity deficiencies and confirm capacity related sanitary sewer overflow locations
- Use the model to determine the capacity improvements required to eliminate capacity related sanitary sewer overflows for a selected design storm
- Develop a phased projects improvement plan and budgetary estimates for implementing the required capacity improvements to the wastewater collection system.
- Provide recommendations for potential infiltration/inflow reduction measures
- Outline a sewer system renewal and replacement plan

LWRU SERVICE AREA AND WASTEWATER COLLECTION SYSTEM

The LRWU wastewater service area, corresponding to the SECAP study area, is composed of six basins: Little Maumelle, Fourche, North and South 60, District 142 and Riverfront. The Utility provides service to over 60,000 customers and maintains over 1,100 miles of collection system lines ranging in size from 6 to 60 -inches in diameter for the greater Little Rock area. This report addresses both the capacity-related system deficiencies found in the larger diameter lines and their supporting conveyance and treatment facilities. Specific facilities that are impacted by the results of this report are the Adams Field and Fourche Creek WWTPs, and the Cantrell, Little Maumelle and Arch Street Pump Stations (Figure 1).

DESIGN FLOWS / DESIGN STORM

A temporary flow-monitoring program was conducted to evaluate the dry weather and wet weather flows for the six (6) basins. The program lasted from March 15 to April 28, 2000. The following equipment was installed throughout the system for monitoring purposes:

- 63 gravity flow meters
- 4 force main flow meters
- 8 groundwater gauges
- 8 rain gauges

Existing Flows. The hydraulic sewer model requires a determination of dry weather and wet-weather flows to assess the hydraulic impact on the existing sewer system.

Flows

Flows in the sewer system are comprised of wastewater from residential, commercial and industrial discharges, ground water infiltration and rainfall-related inflow/infiltration. The population based wastewater flows were derived from the building and land-use data provided by LRWU with the ground water and rainfall flows derived from the flow meter data.

Groundwater Infiltration

Groundwater infiltration (GWI) enters the sewer system via pipe joints, manholes, and pipe cracks, and are typically observed as a constant inflow, the GWI flow varies seasonally. The flow will fluctuate according to local rainfall patterns, soil, ground conditions, and increases after prolonged rainfall periods. The flow monitoring data collected for this study shows significant GWI throughout the sewer network and the basin.

Wet Weather Infiltration / Inflow

According to the flow meter data collected during the monitoring period, the Little Rock sewer basin exhibits a significant wet-weather flow response. Based on the flow meter data, the wet weather flow response in the Little Rock collection system appears to be due primarily to rapid infiltration into sewer defects rather than inflow from direct drainage connections like roof leaders or area drains. The meter data also indicated significant variation in wet weather flow response between different areas of the system.

Future Flows. The hydraulic sewer model requires forecasted dry weather and wet-weather inflows to assess the hydraulic impact on the future sewer system. The future dry weather flows represent increased flows caused by population growth, while future wet weather flows are based on a design rainfall event. The design rainfall event is generated to create a "worst-case" design scenario for predicting future problems and providing flow criteria for developing hydraulic improvements.

Model Assumptions

The model of future flows were based on the following assumptions:

- No net population growth in the six sewer basins
- No net reduction in I/I associated with the proposed sewer rehabilitation program or increase in I/I due to future sewer deterioration in unrehabilitated areas.

Design Rainfall Event

During November 2000, LRWU experienced a significant rainfall event following a prolonged month of antecedent rainfall producing high groundwater conditions. The rainfall duration exceeded 48 hours and generated over 5 inches of total rainfall. For this study, the November 2000 observed rainfall event was used as the "design event" to identify and develop solutions for the master plan.

The observed rainfall event was quantified in terms of return period by comparing the recorded depth and duration with historical rainfall intensity-duration-frequency (IDF) relationships for the Little Rock area. The November 2000 rainfall event equates to a storm event with a return period between 2 and 5 years and was selected as the design storm event because the storm:

- Exceeded LRWU design criteria, which is a 2-year event
- Provided a realistic spatial distribution of rainfall throughout the service area
- Coincided with reported hydraulic spills / flooding
- Provided model calibration confirmation since permanent meter data was available for this event
- Combined with an unusually long period of antecedent rainfall, provided "worst case" design condition

HYDRAULIC MODELING AND CAPACITY ANALYSIS

A fully dynamic hydraulic model was built to simulate operation of the LRWU wastewater collection system. The model was calibrated to both dry and wet weather flow conditions and was used to identify hydraulic capacity deficiencies in the system during the design wet weather event.

Hydraulic Model Description. The computerized hydraulic model includes pump stations, the force main system and gravity lines 10 inches in diameter and larger. Links and nodes represent pipes, manholes, controls and pump station wet-wells. Delineated sewer sub-basins represent flow in unmodeled pipes draining to specific modeled nodes. Population and landuse data determine the amount of flow entering the modeled system from these areas. Groundwater infiltration and I/I due to wet-weather runoff provide additional model inflows.

Little Maumelle, Cantrell, and Jamison Pump Stations were fully modeled, real time control was used to accurately model pump sequencing at Little Maumelle and Jamison Pump Stations; the Interstate Park Gate was also modeled using real time control. Adams WWTP and Arch Street Pump Station were represented in the model as limited discharge orifices, meaning that the influent flow to these facilities was limited based on their current maximum capacities.

Model Calibration. The model was calibrated for both dry and wet weather flow conditions based on data from 63 temporary flow meters. During the calibration process, model results were compared to meter data, and model parameters such as per capita flows, diurnal patterns, groundwater infiltration, runoff routing, and pump curves were adjusted to provide more accurate model and meter data fits.

Initial model results for the design storm indicated that hydrologic conditions were different during the design storm compared to the wet weather calibration event, using data from five permanent flow meters, model runoff parameters were slightly modified to more accurately model conditions during the design event. This calibration was verified by comparing reported historical overflows to model predicted overflows for this event.

Hydraulic Analysis. The calibrated model was used to evaluate the hydraulic performance of the trunk system during the design storm event. Areas with hydraulic problems such as overflows or surcharging were identified, and, where possible, the cause of the problem was determined. Causes of surcharging and overflows included localized limited capacity and backwater due to downstream capacity restrictions.

ALTERNATIVES ANALYSIS

The objective of the hydraulic model was to predict flow conditions during the design storm event and provide a tool to identify capacity improvements that would eliminate system deficiencies. From the modeled output data, potential alternatives were developed to address identified capacity problems. Alternatives included paralleling existing deficient sewers, replacement of undersized sewers with larger diameter pipes, upgrading capacity for existing pumping and treatment facilities, and providing additional system capacity by storing wet weather related flows. After capacity-related alternatives were developed, each alternative was evaluated against a set of criteria that included project feasibility, construction methods, community issues, long term flexibility, and cost.

Identification of Wastewater System Alternatives. Five alternative scenarios correcting system deficiencies were identified for comprehensive evaluation. Each alternative represented an overall view of Little Rock's wastewater system and to varying degrees incorporated wastewater technology for increased conveyance capacity, storm water storage capabilities, and additional treatment capacity through new or expanded facilities.

Alternatives Evaluation. A Citizens Advisory Group (CAG) was formed to obtain input on the various system alternatives. The CAG identified evaluation criteria from a citizen or community perspective. The criteria included:

- Environmental concerns
- Citizen awareness - social impacts and aesthetics
- Rate and property value impacts
- Technical and ongoing operation and maintenance concerns
- Regulatory concerns
- Construction issues

The five alternatives were also reviewed by representatives from the Little Rock Wastewater Utility (LRWU). When conducting their evaluation, the Utility considered additional issues related to schedule, budget, and implementation of construction projects.

Selected Alternative. Input from both the CAG and Utility was used to select the preferred alternative for the overall capacity assurance program. In general increased system capacity was preferred over construction of new wet weather storage facilities, which were considered less desirable due to permitting issues, site esthetics, environmental and odor concerns.

Permitting, environmental and community concerns were identified with respect to the construction of a new wastewater treatment plant in the Maumelle basin; however,
limitations on the ability to expand the existing Adams Field WWTP capabilities in order to accept increased flows outweighed these concerns. Hence, Alternative A1 (Figure 2) was selected as the preferred altemative for meeting system capacity deficiencies. Alternative A1 consists of the following improvements:

- A new treatment plant in the Little Maumelle Basin, including 20 million gallons of equalization basins.
- Increased capacity at the Adams Field WWTP (72 to 94 MGD), including 25 million gallons of equalization basins.
- Increased capacity in the Fourche Creek WWTP (38 to 60 MGD).
- Increased capacity at the Arch Street Pump Station (38 to 60 MGD), including 41,500 LF of new 30 -inch parallel force main.
- Increased capacity in the Cantrell Pump Station (25 to 40 MGD).
- New Jimerson Creek Pump Station (12 MGD).
- New I-430 Booster Pump Station (1 MGD),
- 72-inch parallel trunk line, from Adams Field WWTP to the west-end of the Twin 60 s interceptors.
- Various trunk sewer improvements needed for additional capacity throughout the system.
- Implementation of a sewer rehabilitation and replacement program to reduce system I/I.

Costs. Estimated costs were developed for comparison purposes and do not include land right-of-way acquisition, construction management, legal work and financing fees, and operation and maintenance costs. Capital costs include an additional 25% mark up for contingencies and engineering. No inflation factors were used in the calculations. Table 1 shows capital costs for all of Alternative A1 improvements.

Table 1
Estimated Capital Costs for Alternative A1

Type of Project	Description	Cost (\$ million)		
Trunk Sewer	Trunk Improvements Throughout the 6 Basins	$\$ 53.1$		
Improvements	72-Inch Parallel Line (45,800 linear feet)	$\$ 30.4$		
	Cantrell (40 MGD)	$\$ 4.6$		
Pump Station	Arch (60 MGD), w/41,500 LF of 30-inch FM	$\$ 12.6$		
Improvements	Jimerson (12MGD)	$\$ 2.5$		
	I-430 Booster (1 MGD)	$\$ 0.4$		
Treatment Plant	Maumelle (4 MGD), w/20 MG Basins	$\$ 19.9$		
	Adams Field (94 MGD), w/25 MG Basins	$\$ 24.0$		
	Fourche Creek (60 MGD)	$\$ 23.4$		
Total				$\$ 171.0$

IMPLEMENTATION RECOMMENDATIONS

The implementation schedule was developed to accommodate immediate improvement needs at existing facilities while constructing the new Little Maumelle WWTP. Trunk sewer improvements have been scheduled starting with upstream sewer line rehabilitation then moving down stream and concluding with construction of the major 72-inch parallel trunk line. An aggressive I/I abatement program is targeted for areas that would have a direct impact on proposed line work. Projects that increase line capacity were staged to allow for potential credit for any flow reductions resulting from the I/I abatement program. Construction of the major trunk sewers and expansion of the Fourche WWTP would follow completion of the upstream work. This staged implementation approach resulted in a recommended 15 year schedule for installation of recommended capacity improvements. Projects were prioritized based on response to critical conditions existing in the collection system, program flexibility, and coordination with development of the Utility's Wastewater Capital Improvements Plan (CPP). Beyond the costs for the SECAP improvements, the Utility's CIP includes continuing sewer rehabilitation work, facility operation and maintenance improvements, and miscellaneous improvements to wastewater facilities. Capacity improvements outlined in this report were not intended to serve as a substitute for the Utility's comprehensive CIP. The estimated capital costs and schedule for implementation for the SECAP improvements are shown in Figure 3 and Figure 4.

Recommendations. The Utility should begin implementation of the capacity improvement program recommended by the System Evaluation and Capacity Assurance Plan Report. Proposed alignments and sizes of all recommended projects should be verified with detailed pre-design analyses, including topographic surveys, geotechnical investigations, utility research, and constructability reviews. The decision to parallel or replace existing sewers should consider the physical condition and remaining useful life of the existing pipelines; the availability of pipeline corridors for new sewer construction; and operation and maintenance concerns. After completion of sewer rehabilitation, flows should be re-monitored to verify that reductions in I / I have been achieved for local systems. The hydraulic model should be updated accordingly upon completion of that work and credit for downsizing or elimination of additional capacity related improvements should be documented.

INFILTRATION/INFLOW ABATEMENT

The Utility should focus on making the I/I abatement plan an integrated approach that addresses I/I problems with an ongoing sewer replacement and repair effort. The plan should link ongoing emergency repair and sewer renewal programs with a focused effort on removing extraneous I/I from the system. Plan provisions should be consistent with the emerging Environmental Protection Agency's (EPA) Sanitary Sewer Overflow (SSO) policy including capacity, management, operations and maintenance (cMOM) requirements. The targeted I/I reduction program should prioritize sewer rehabilitation and replacement based on the areas with the highest I / I contributions and the ability to impact the capacity improvement plan by reducing or eliminating trunk sewer improvements. The program should also address the complex issue of I/I abatement for private sewer laterals and service

Figure 3
Annual Expenditures for Capacity Assurance Plan Improvements

Figure 4
Annual Expenditures by Type of Construction

connections. The infiltration/inflow reduction plan should consist of the following components:

- Flow targeted I/I reduction
- Emergency, corrective and preventative maintenance
- Inspection and condition assessment prioritization
- I/I source identification and abatement
- Private property I/I correction programs

The integrated I/I abatement program should be implemented as part of the overall sewer system improvement program, ongoing maintenance, and capital rehabilitation and replacement efforts. The I/I program should directs its initial focus on known problem areas like Upper Hinson in the Maumelle Basin and developed areas located in the South 60 Basin along the upper reaches of the Rock Creek trunk line.

CITIZEN PARTICIPATION

Members of a Citizens Advisory Group were selected from a cross section of the Little Rock Community representing municipal, regulatory agencies, commercial, industrial, as well as private citizens groups. The Group was organized to exchange information and discuss options for correcting Little Rock's wastewater system capacity deficiencies and to ensure that community values were reflected in the decisions and recommendations of the System Evaluation and Capacity Assurance Plan for Little Rock.

Review of Alternatives. The CAG evaluated options for addressing system capacity deficiencies that included wet weather storage, conveyance and treatment improvements. The CAG developed criteria and an evaluation matrix for ranking capacity improvements and selecting their preferred options. The results of their selections and recommendations became an integral part of the Utility's SECAP evaluation.

Recommendations. The matrix evaluation indicated options involving storage facilities were not preferred. However, opinions regarding construction of a new Maumelle WWTP was less definitive for the Group. While the conveyance option was slightly favored the Group did express concerns regarding higher costs and adverse impacts to the community during construction. The CAG favored implementing a comprehensive rehabilitation program before committing to an extensive program to add capacity by installing larger interceptors or relief sewers. The Group also recommended addressing I/I contributed by private lines and service connections and that the City consider initiating smart growth initiatives to control new development in logical manner.

OTHER RECOMMENDATIONS

Two additional options were identified during the evaluation process. While technically feasible, further evaluation of both of these options would require a collaborative effort with outside parties that extends beyond the scope of this contract and were, therefore, not
included in evaluation for the SECAP. However both of these options appear to merit further consideration due to their cost effectiveness and community minded approach.

North Little Rock WWTP Option. Wastewater from the Maumelle Basin is currently conveyed through the Riverfront Basin to the Adams Field WWTP. The White Oak Bayou WWTP, owned and operated by the North Little Rock Wastewater Utility (NLRWU), may be capable of accepting and treating wastewater from the Maumelle Basin and North Riverfront service area. This option includes installation of a new pump station for the Maumelle Basin and possibly new pump stations for the Jimerson Creek and I-430 areas. Wastewater would be conveyed across Murray Lock and Dam and to the existing White Oak Bayou Treatment Plant. At a minimum, the plant would need additional capacity improvements as well as a revision to permit conditions for plant discharge. This option would reduce the amount of flow to the Adams WWTP and eliminate the need for a new treatment plant in the Maumelle Basin.

Wet Weather Storage Facility Option. Though the Utility and CAG preferred not to incorporate new storage facilities in the selected alternative, site evaluations for the SECAP revealed the existence of a landfill facility located in the same general vicinity where proposed storage facilities might have been installed. Using existing borrow pits to construct wet weather storage facilities at the landfill site could at the least partially alleviate many of the community and environmental concerns. Furthermore, constructing the least cost alternative with wet weather storage would provide $\$ 24.1$ million savings over Alternative A1. With a significant amount of the excavation needed for storage facilities already completed in the borrow area, additional savings would be realized by using the landfill site for storage.

This report presents the results and recommendations of the System Evaluation and Capacity Assurance Plan (SECAP) for Little Rock's wastewater collection system. The report was prepared by MWH under an agreement with the Little Rock Sewer Committee dated June 28, 2000.

1.1 BACKGROUND AND MASTER PLAN OBJECTIVES

The Little Rock Wastewater Utility (LRWU) completed the first phase of collection system study and small line improvements in year 2000. Part of this ongoing work involved initial engineering studies completed for Adams Field WWTP in 1998 and Fourche WWTP in 1999; an evaluation of options to handle wastewater for the Little Maumelle Basin was also completed in 2001. This report incorporates information from these planning documents and provides a comprehensive evaluation of the current and future needs of the entire LRWU collection system.

The overall objectives of the SECAP study are as follows:

- Develop a hydraulic model of the trunk sewer system.
- Use the model to identify existing capacity deficiencies and capacity requirements
- Develop phased improvement projects plan and budget estimates for implementing the required capacity improvements to the wastewater collection system.
- Provide recommendations for potential infiltration/inflow reduction measures
- Outline a sewer system renewal and replacement plan

1.2 LWRU SERVICE AREA

The LWRU system provides wastewater collection and treatment services for the City of Little Rock, Arkansas. The Utility's wastewater service area includes six basins: Little Maumelle, Fourche, North and South 60, District 142 and Riverfront. The Utility's wastewater service area boundary, which defines the study area for the SECAP, is shown in Figure 1.1.

1.3 LWRU WASTEWATER COLLECTION SYSTEM

The Little Rock Wastewater Utility provides service to over 60,000 customers within the city of Little Rock and maintains over 1,100 miles of collection system lines ranging in size from 6 to 60 -inches in diameter. This report addresses capacity-related deficiency found in the larger diameter line and conveyance facilities. LRWU owns and operates two wastewater treatment plants: the Adams Field and Fourche Creek Wastewater Treatment Plants (WWTPs). The Adams Field WWTP has a design flow of 36 million gallons per day (MGD) with a maximum capacity of 72 MGD; the Fourche Creek WWTP has a design flow of 16 MGD with a maximum of 38 MGD. Major conveyance facilities that impact the larger trunk collection and conveyance system include the Cantrell, Little Maumelle and Arch Street

Pump Stations. The Arch Street Station has a capacity of 38 MGD, Little Maumelle 5.6 MGD and Cantrell 25 MGD.

1.4 SCOPE OF MASTER PLAN UPDATE

MWH was authorized by LWRU to provide engineering consulting services for the System Evaluation and Capacity Assurance Plan under an agreement dated June 28, 2000.

The scope of the project, as well as a brief discussion of work conducted under each task, is described below.

Task 1 - Project Management. The purpose of this task was to provide project management, identify key members of the project team, mobilize team personnel, conduct meetings with LRWU staff, and provide general project administration throughout duration of the project. MWH coordinated with LRWU to establish agendas for meetings that included:

- Communication issues
- Project Scope
- Project Schedule
- Meeting formats
- Deliverables
- Data sources
- Data Structures for deliverables
- Data Retrieval Coordination
- Large Diameter Pipe Investigation
- Flow Monitoring Status
- Technical Memorandum Standards
- Initial Report Format

Task 2 - Data Collection. The object of this task was to the collect existing data, maps and flow information for review and to determine impact on evaluation procedures and inclusion in the project report. The collected data included existing electronic and hardcopy data, data collected under separate contract with LRWU and Pitometer, Byrd / Forbes, and field data collected within the scope of this contract. Data were used to better understand the existing collection system and to develop recommendations for capacity upgrade alternatives. Technical Memoranda (TM) were provided for model standards, large diameter line investigation and pump station evaluations.

Task 3 - Evaluation Criteria. This task involved three phases: establishment of standard evaluation criteria to be used in the hydraulic model, alternatives analysis, and project development based on the data collected and discussions with LRWU personnel. Criteria were developed for interpreting flow data, determining dry and wet weather benchmarks, and estimating dry and wet weather base and peak flows. Standards were developed for determining collection system physical characteristics, I/I rates for the study areas, and data
formats compatible with LRWU datasets and systems. A TM was provided to the Utility for evaluation criteria.

Task 4 - Model Development. This task involved the development and calibration of the LRWU Hydroworks sewer model. In coordination with LRWU, line segment and manhole data necessary for a complete model network were input, into the model. In conjunction with LRWU staff, field verification of this data were supplied and sewershed areas were developed using the evaluation criteria. The model was initially calibrated for dry weather flows and infiltration rates, before the simulation of actual recorded wet weather events for three storms. Upon completion of this task, hard and electronic copies of a technical memorandum of the sewershed data set were provided to LRWU for review and approval.

Task 5 - Development Improvement Projects. This task included developing specific capital improvement projects required to address modeled system deficiencies and future capacity requirements. A proposed phasing plan for projects was developed based upon capacity needs and the City's ability to fund new projects while sustaining existing levels of system operation and maintenance. Recommended alignments were identified and cost estimates were prepared, this task also included the involvement of a Citizens Advisory Group to gather input and obtain acceptance from the public, utility and city officials

Task 6 - Recommendation and Final Report. This task included the creation of draft and final engineering reports summarizing the results of all previous tasks. The report describes:

- Work performed during the various tasks
- Procedures and methodologies used
- Alternatives evaluated in developing the recommended plan
- Detailed plan with cost estimates

The draft report was developed to meet Arkansas Department of Environmental Quality (ADEQ) Revolving Loan Fund requirements. The final report was presented to the Little Rock Sewer Committee, technical memoranda, intermediate reports and previous studies are attached to the report under separate appendicies.

1.5 REPORT ORGANIZATION

The System Evaluation and Capacity Assurance Plan Report includes eight sections, which are described below.

- Section 1, Introduction, presents the background, objectives, and scope of the Capacity Plan study.
- Section 2, Existing and Future Flows, discusses the planning area land use projections, the basis for developing estimates for each component of wastewater flows, and the flow projections for the service areas.
- Section 3, Modeling and Capacity Analysis, describes the modeled sewer system, model scenarios, model analysis criteria, and capacity analysis results.
- Section 4, Alternative Improvement Projects, explains the process for developing capacity improvement projects and presents the recommended projects.
- Section 5, Recommendation for Improvement Plan, presents the recommended improvement projects including project prioritization, budgets, cost allocations, and implementation recommendations.
- Section 6, Infiltration / Inflow Abatement, summarizes recommendations and alternatives for I/I reduction plan.
- Section 7, Citizen Participation, describes participation of the Citizens Advisory Group, and their concerns and recommendations regarding system capacity deficiencies.
- Section 8, Other Options, summarizes additional options for improvements that are not included as a part of the scope for this contract. Identified options indicate sufficient initial feasibility to merit further consideration for possible implementation.

The Appendices to this report include documentation for the recommended improvement plan including flow calculations, model output, and cost estimates. The Technical Memoranda (TMs) completed during the study are included in a separately bound volume.

This section of the report presents the basis of the existing model inflows used to calibrate the model, and the future model inflows used for evaluating hydraulic capacity issues and developing solutions. The section provides a summary of the flow monitoring data collected for calibration and infiltration/inflow (I/I) analysis, development of dry and wet weather flows, and the design rainfall event used to assess capacities and plan solutions.

2.1 FLOW MONITORING SUMMARY

2.1.1 Flow Monitoring Data

The flow meter data was obtained from a temporary flow monitoring contract conducted by Pitometer, Byrd / Forbes (PBF). The goals of the contract were to provide LRWU with dry and wet weather sewer flows for model calibration, measure I/I quantities upstream of each flow meter site, measure pump output of four LRWU pump stations, and monitor groundwater levels at eight locations in the collection system.

PBF installed 63 gravity flow meters, 4 force main flow meters, 8 groundwater gauges, 5 sewer gas meters and 8 rain gauges throughout the study area. The flow monitoring period extended from March $15^{\text {th }} 2000$ to April $28^{\text {th }} 2000$ and captured 5 rain events ranging from 0.50 to 3.09 inches per event. Typical dry weather periods or "events" were also identified for purposes of dry weather model calibration. Table 2.1 lists the dry and wet weather events.

Table 2.1
Dry and Wet Weather Event Summary

TITLE	REF	DURATION (hrs)	START DATE	START DAY	END DATE	END DAY
DWF Event X (Weekday)	X	48	$04 / 26 / 2000$	Wednesday	$04 / 28 / 2000$	Friday
DWF Event Y (Weekday)	Y	48	$04 / 19 / 2000$	Wednesday	$04 / 21 / 2000$	Friday
DWF Event Z (Weekend)	Z	48	$04 / 29 / 2000$	Saturday	$05 / 01 / 2000$	Monday
WWF Event A	A	192	$03 / 15 / 2000$	Wednesday	$03 / 23 / 2000$	Thursday
WWF Event B B WWF Event C C Flow Survey Period T L 240	$03 / 23 / 2000$	Thursday	$04 / 08 / 2000$	Saturday		

For more information about the flow meters including meter locations, model references, and location descriptions, refer to the Flow Monitoring Technical Memorandum (TM) included as Appendix I.

2.1.2 Observed Rainfall Data

The rainfall data used for the project is gauge-adjusted radar-rainfall data provided by NEXRAIN Corporation. Radar rainfall data provides an accurate estimation of the spatial distribution of rainfall which is critical to model calibration. In the past, hydraulic models have been calibrated using rainfall data collected from rain gauge networks providing accurate rain measurements at discrete points, but with poor estimates falling between gauges. Conversely, radar is able to see between the gauges but lacks the consistency in estimating rainfall at a specific point.

The radar data was converted into ArcADE rain data DBF files, and a graphic theme of the grid cells. The data is used to develop HydroWorks rain data (RED) files for selected wetweather events, and evaluate the spatial variation over the Little Rock study area. Figure 2.1 shows the spatial variation of total rainfall during the flow monitoring period.

Figure 2.1
Total Rain Depths (in) from 03/15/2000 to 04/28/2000

2.2 EXISTING MODEL INFLOWS

The hydraulic sewer model requires dry weather and wet-weather inflows to assess the hydraulic impact of the existing sewer system. Sewer flows are generated from residential populations, commercial and industrial flows, ground water infiltration and rainfall related infiltration. The population based flows were derived from the building and land-use data provided by LRWU with the ground water and rainfall flows derived from the flow meter data.

2.2.1 Residential and Employment Wastewater Flows

The population data is used to estimate the dry weather flows generated from residential and employment-based populations (i.e.: commercial and industrial). The population estimates were derived from an ArcView GIS building theme which provided a spatial distribution of all residential, commercial and industrial buildings. The populations were expressed as equivalent residential units (ERU) per building. For example, a typical single family home was equal to 1 ERU; where as commercial buildings were assigned multiple ERU values.

The ArcView building theme (buildings2.shp) contained a field defining the building code ("Structure") which allowed the consultant to identify the building type and estimate the ERU based on the building area. However, approximately 60% of the buildings had missing building codes, hence an alternative method of identifying the building type was implemented. The approach compared the building area (ie; 'footprint') with average building footprints for single family, multiple family, and commercial and industrial buildings. Building footprints less than $500 \mathrm{ft}^{2}$ were eliminated from the process to avoid including garages, storage sheds etc. The average building footprints were derived from buildings with known types. Table 2.2 below lists the building types with average building footprint areas.

Table 2.2
Average Building Footprint Areas

Description	Structure Code	Minimum Area (sq.ft.)	Maximum Area (sq. ft.)
Mobile Homes	410	500	1000
Single Family	411	1000	3000
Multi Family	414	3000	12,000
Commercial	580	12,000	50,000
Industrial	650	50,000	No limit

Population data was used to calculate dry weather flows for residential and employment areas. The dry weather flow was calculated in the model by multiplying the population by a per capita flow rate (eg; 75 gallons/day/capita for residential and 25 gallons/day/capita for employment). The HydroWorks model only accepts one population per sewer basin, therefore it was necessary to derive 'equivalent' residential and employment populations. The following formula was used to calculate the equivalent population:

Population (equiv) $=$ Res Pop $+[$ Emp Pop $x(E m p$ PCF/Res PCF) $]$
where; Res Pop = Residential Population
Emp Pop $=$ Employment Population
Res PCF = Residential Per Capita Flow (eg; $75 \mathrm{~g} /$ day/head)
Emp PCF = Employment Per Capita Flow (eg; 25 g/day/head)

The Sewer Basin Manager tool, within the ArcADE suite, was used to allocate the populations to each sewer basin. This was achieved by overlaying the population theme (converted from the building theme) on top of the sewer basin polygons and spatially distributing the population data.

2.2.2 Wastewater Diurnal Profiles

Diurnal profiles for residential and employment wastewater flows are used to model the daily dry weather flow variation. The profiles were generated from observed flow meter data to create a true representation of time-varying dry weather flows in the Little Rock service area. Flow meters located in the upstream portions of the network were selected to provide a typical residential profile, and a low-income residential profile. The flow data was averaged and normalized to create flow multipliers for 24 hour weekday and weekend periods. The employment diurnal profile was created from a standard commercial diurnal curve. This standard curve was adjusted during initial calibration based on model results to make it specific to the LRWU system. Figure 2.2 displays the diurnal curves used for this project.

Figure 2.2
Wastewater Diurnal Profiles

2.2.3 Groundwater Infiltration

Groundwater infiltration (GWI) enters the sewer system via pipe joints, manholes, and pipe cracks, and is typically observed as a constant inflow. The GWI flow varies seasonally and
will fluctuate according to local rainfall patterns and soil and ground conditions. The flow monitoring data collected for this study shows significant GWI throughout the sewer network.

The GWI flows were derived from the flow monitoring data by extracting the calculated population-based dry weather flow (base DWF) from the observed minimum dry weather flows. Minimum flows typically occur during the nighttime or early morning hours when base wastewater flows are low. Subtracting an estimate of minimum base DWF from the minimum measured flow yields the estimated GWI for each monitored area. The minimum base DWF is typically about 15 to 20 percent of average base DWF. The resulting GWI is expressed on a unit basis (gallons/day/acre) by dividing by the sewered acreage of the monitored area.

The GWI flows were distributed throughout the model network using ArcADE by allocating observed GWI rates to the sewer basins. Comparing the dry weather flows with the flow monitoring data validated the model and ensured the application of the correct GWI distribution.

2.2.4 Wet Weather Infiltration / Inflow

According to the flow meter data collected during the monitoring period, the Little Rock sewer basin exhibits a significant wet-weather flow response. The data were reviewed to interpret the flow response to rainfall and to develop the wet-weather modeling approach. The flow meter data revealed the following conditions:

- Increased infiltration during rainfall event
- Decreasing infiltration after rainfall event
- Rapid flow response following the initial rainfall
- Increased groundwater infiltration (GWI) during a succession of rainfall events
- Low rapid response flows indicating few direct connections
- Large wet-weather flow variation between flow meters

Following the identification and evaluation of the hydrological processes, the consultant developed an approach for modeling the rainfall, runoff and routing processes. In this context, rainfall is defined as the intensity and duration of rain falling onto the sewer basin during and preceding the event period. The spatial variation of rainfall is significant when relating the rainfall to the wet-weather inflow. After rainfall commences, the runoff process converts the rainfall depth to an inflow volume; this process uses an "effective area" to represent the flow mechanisms such as groundwater seepage, storm water connections, and flow through laterals. Finally, flow routing describes the translation and attenuation of inflow caused by overland routing, seepage through ground, and slows leakage via cracks.

Rainfall data is needed to compute wet weather flows for model events. For any storm event, rainfall may vary throughout the basin. Therefore, specific rainfall amounts must be assigned to each sewer basin in the model. A graphical representation of this model was created using the radar cells to allocate individual rainfall hyetographs to each sewer basin. ArcADE includes a process for graphically assigning a specified "rainfall index" to each
sewer basin using the rainfall basin (radar cell) theme. The rainfall index defines the rainfall to be used for that sewer basin in the model. The actual rainfall data used for model runs are stored in HydroWorks rainfall event data (RED) files. The RED file contains the rainfall data by time step (a 15 -minute rainfall time step has been used for the LRWU model) for each rainfall index.

For more information about the wet weather flow modeling and the development of the model files, refer to the Data Management, Model Building, and Model Inflows Technical Memorandums (TMs) included in the Appendices $\mathbf{H}, \mathbf{J}, \& \mathbf{K}$ respectively.

2.3 DESIGN FLOWS

Forecasted dry weather and wet weather inflows are necessary to assess future sewer system hydraulics and to plan system improvements over the next ten to fifteen years. Future dry weather flows generally represent increased flows caused by population growth, while future wet weather flows are based on a design rainfall event. The design rainfall event is generated to create a "worst-case" scenario for predicting future problems and providing flow criteria for developing hydraulic improvements.

2.3.1 Residential / Employment Flow Projections

The following assumptions where made during the assessment of future residential and employment based dry weather flows.

- No population growth for the current sewer basin
- Future development west of Little Maumelle, which may drain into the proposed new wastewater treatment plant. Inflow from this development was not included in the model as it is expected to drain directly to the proposed plant without any impact on the existing system.

The hydraulic analysis of the future sewer system used the existing residential and employment dry weather flows. As described previously, these flows were generated from the building data supplied by LRWU.

2.3.2 Groundwater Infiltration Projections

Groundwater infiltration varies seasonally depending on annual rainfall conditions. The variation and magnitude of GWI was examined by reviewing the daily average dry weather flows at the Adams Field WWTP. Based on this review, the following observations were made:

- GWI is predominantly related to rainfall depth and duration
- High GWI occurs during March / April, following the winter rainfall
- Low GWI occurs during the summer months
- GWI is present throughout the year due to winter and summer rainfall

The study assumed the GWI rate remained constant during the existing and future flow projections. This assumption was based on a trade-off in which system degradation and future rehabilitation would exactly offset one another. The GWI was present in all flow meter data indicating that GWI was distributed throughout the system so that it would be difficult to isolate and eliminate. Therefore, the design flows used for developing hydraulic schemes include both groundwater infiltration and the rainfall dependent inflow and infiltration (RDI/I) flow components.

The GWI flow projections were based on existing GWI obtained from the March / April period. This period represented the worst-case scenario of high seasonal groundwater infiltration. The GWI rates from this seasonally high period were extracted from the flow data and used for both model calibration and infiltration projections.

2.3.3 Design Flow Condition

Wastewater collection systems are typically sized for a specific "design" condition, which defines a designated system performance criterion during a wet weather event.

Generally, the performance criterion is defined by the maximum allowable water level in the system, which may be at the ground surface (i.e., "no overflows"), a specified distance below the ground (say, 3 to 5 feet below the manhole rims), or more conservatively, by a maximum allowable flow depth to pipe diameter (d/D) ratio. The "design event" establishes the maximum recurrence frequency under which the design performance criterion can be exceeded. Thus, if the performance criterion is "no overflows" and the recurrence frequency is 10 years, then the system must be designed such that overflows would occur no more frequently than once every 10 years.

In practice, the design event is often equated to a specified recurrence frequency rainfall event. Thus, the "design flow" is equated to the flow that would occur for a x-year frequency rainfall event, and the system is sized such that the design performance criterion is not exceeded for the x-year rainfall event flows. Since the magnitude of rain dependent inflow and infiltration flows are not governed solely by the intensity and duration of the rainfall, this system design technique does not necessarily ensure that the flows in the system will violate the performance criterion only once in every x years. However, using rainfall recurrence frequency as a design flow criterion is generally considered to be a reasonable approach for establishing collection system design flows.

2.3.4 Design Rainfall Event

Design storms are based on long-term historical rainfall data. During November 2000, LRWU experienced a significant rainfall event following a prolonged month of antecedent rainfall producing high groundwater conditions. The rainfall duration exceeded 48 hours and generated over 5 inches of total rainfall. For this study, the November 2000 observed rainfall event was used as the "design event" to identify and develop solutions for the master plan.

The observed rainfall event was quantified in terms of return period by comparing the recorded depth and duration with rainfall intensity-duration-frequency (DF) relationships. The November 2000 rainfall event equates to a design event with a return period between 2 and 5 years. In addition to meeting LRWU design storm criteria, the November 2000 event was selected as the design event because this rainfall event:

- Exceeds LRWU design criteria
- Provides a realistic spatial distribution of rainfall
- Coincides with reported hydraulic spills / flooding
- Was used for confirming model calibration with permanent flow meters
- Occurred after an unusually long period of rainfall, giving rise to high groundwater infiltration and therefore creating a worst-case scenario.
- Had available rainfall radar data providing an accurate spatial representation of rainfall depths.

Table 2.3 summarizes the design rainfall event details, and Figure 2.3 shows a sample rainfall hyetograph with a total depth of 4.8 inches. Figure 2.4 shows the spatial variation of total rainfall depth over the entire sewer basin.

Table 2.3
Design Rainfall Event Details

TITLE	REF	DURATION (hrs)	TOTAL DEPTH (in)	START DATE	END DATE
Design Rainfall Event	E	50	4.5	$11 / 22 / 2000$	$11 / 25 / 2000$

Figure 2.3
Rainfall Hyetograph for Design Rainfall Event (Event E)

Figure 2.4
Total Rain Depths (in) for Design Rainfall Event (Event E)

2.3.5 Design Wet Weather I/I

The rain dependent inflow and infiltration ($\mathrm{RDI} / \mathrm{I}$) was generated from the design rainfall event and revised model runoff parameters calibrated using flow data obtained from four permanent flow monitors. In addition to this flow data, the model spill predictions were verified against reported spills occurring during the storm.

The revised calibration process identified a change in hydraulic conditions that proportionally reduced the wet weather I/I entering the system. This I/I reduction occurs when the system exhibits significant surcharging that prevents additional flow entering the system. As a result, the ratio of I / I to rainfall decreases as the system becomes overloaded. Model calibration parameters were modified to account for this effect. Further calibration details are described in Section 3 and the Model Calibration Technical Memorandum in Appendix L.

As previously stated, the study assumed the wet-weather I/I rates remained constant during the existing and future flow projections. This assumption was based on a trade-off between system degradation and future rehabilitation. The wet-weather I/I was present in all flow meter data indicating that I / I is distributed throughout the system making it difficult to isolate and eliminate. Therefore, the design flows used for developing hydraulic schemes includes both the groundwater infiltration and the RDI/I flow components.

This section describes the hydraulic model used to identify and analyze capacity deficiencies in the LRWU collection system. Model components such as; the modeled network, model areas, pumps, and controls are described and model calibration is discussed. Capacity deficiencies were identified based on model-predicted overflows and surcharging, these deficiencies are divided by service area and presented in this section. The problem areas described in this section correspond to the recommended upgrades for increased conveyance capacity presented in Section 4.

3.1 HYDRAULIC MODEL DESCRIPTION

The LRWU collection system was modeled using HydroWorks ${ }^{\text {TM }}$, a fully dynamic hydraulic model developed by Wallingford Software in the U.K. HydroWorks was selected based on a previous model evaluation conducted by LRWU.

The HydroWorks model was used in conjunction with an ArcView GIS interface. The interface, called ArcADE, is an ArcView extension developed by MWH specifically for use with HydroWorks and other hydraulic modeling programs. ArcADE facilitates the management and validation of sewer modeling data, the creation of model-input files, and the review of model results. The ArcADE extension has been provided to LRWU as part of this project.

The modeled system consists of links and nodes, which represent pipes, manholes, controls (e.g., pumps, weirs, gates, etc.), and pump station wet-wells. Delineated sewer sub-basins represent flow in unmodeled pipes draining to a modeled node. Population, land use, and groundwater infiltration data determine the amount of dry weather flow entering the modeled system from these areas. In addition to the sewer network and sub-basin areas, rainfall data and runoff information were built into the model to simulate wet-weather conditions. The model uses real time control to simulate operation of pump stations and controls. Detailed information about the model and model files is contained in the Data Management, Model Building, and Model Inflows Technical Memorandums (TMs) located in Appendices H, J \& K, respectively.

3.1.1 Sewer Network

The LRWU modeled system contains pipes ten inches and greater in diameter, six and eight inch diameter pipes located downstream of larger pipes were also included in the model. Some pipes 10 inches or larger were not included in the modeled system because data for these pipes was not readily available.

The complete modeled network contains 4,814 nodes and 4,847 links. The nodes and links represent actual manholes, pipes, pump station wet-wells and control links (e.g., pumps). The control links included the Little Maumelle, Cantrell, and Jamison Pump Stations and the Interstate Park Gate. The Adams WWTP and Arch Street Pump Station were both represented as limited discharge orifices' meaning that the influent flow to these facilities
was limited, based on existing and future flow conditions. Figure 3.1 shows the entire LRWU collection system with the modeled pipes shown in blue.

All network and pump station information was obtained from LRWU. The data input into the model was validated for common errors, including but not limited to connectivity problems, duplicated or missing data, negative pipe slopes, and pipe crown elevations higher than ground level. In addition to the validation routine, profiles of modeled lines were used to visually identify errors. All discrepancies were corrected with the use of as-built or survey information. These data validation procedures are detailed in the Data Validation TM located in Appendix H.

3.1.2 Collection System Areas

i) Service Areas

The LRWU wastewater collection system has six basins, also known as services areas: Little Maumelle, Riverfront, North 60, South 60, Fourche, and District 142 as defined by LRWU. The model system was divided into these service areas for data validation and initial model building and calibration. The system was recombined into a single model during final calibration. The complete model was used to identify areas with capacity deficiencies and to develop solutions to address these deficiencies. The six collection system service areas are shown in Figure 3.2.

ii) Sewer Sub-basins

Sewer sub-basins define the areas used to allocate populations and associated flow data to the model network. The sewer sub-basins for this study were created by sub-dividing the service areas defined by LRWU. Sewer sub-basins were delineated to include all unmodeled pipes flowing to a particular node in the modeled system. The average size of a sewer sub-basin is approximately 60 acres. Figure 3.2 shows the sewer sub-basins within each service area. Population and land use information was obtained for each sewer sub-basin.

iii) Flow Meter Basins

Flow meter basins define the area draining to a downstream flow meter. These basins, consisting of the sewer sub-basins draining between upstream and downstream flow meters, were used for allocating groundwater and rainfall dependent infiltration and inflow. For this study, 60 flow meter basins were defined based on 63 temporary flow meter sites. Three flow meters were on pipe interconnections and, therefore, do not have associated basins.

3.1.3 Pump Stations

As previously stated, the Little Maumelle, Cantrell and Jamison Pump Stations were fully modeled. Although the operation of Arch Street Pump Station was not modeled, the pump station was represented in the model as a limited discharge orifice. No other pumping facilities in the LRWU system were included in the model.

All pumps at Little Maumelle, Cantrell, and Jamison Pump Stations were modeled as rotodynamic pumps, i.e., curves describing the head-discharge relationship for each pump

governed pump operation in the model. These pump curves were entered into the model and calibrated based on observed pumping capacities. Wet-well levels at which pumps turn on and off were defined to model pump sequencing. In addition, the real time control features of HydroWorks were used to model operating rules such as the shut-down of a small pump in response to the start-up of a large pump. Tertiary mode status, when pumping at Little Maumelle is reduced based on the wet-well level at Cantrell, was also modeled using real time control.

3.1.4 Wastewater Treatment Plants

Neither the Adams Field nor the Fourche WWTPs was fully modeled. Adams Field WWTP was represented as a limited discharge orifice in the model; the flow discharge from the collection system was limited to 72 MGD to simulate maximum plant capacity and any backwater in the collection system that may result. Although the Fourche WWTP, was not included in the model, this omission does not affect the accuracy of the model since the capacity of the Arch Street Pump Station, also modeled as a limited discharge orifice, was the limiting factor for this portion of the system. The Arch Street Pump Station was the farthest downstream point in the Fourche system included in the model.

3.1.5 Interstate Gate Park Control Facility

The Interstate Park Gate is operated based on the flow at Adams WWTP; when the flow reaches approximately 42 MGD , this gate is fully opened to divert more flow through the Arch Street Pump Station to the Fourche treatment plant. After the flow at Adams WWTP subsides, the gate is lowered to its standard opening of approximately 15 percent.

This gate was modeled using real time control. Based on historical operating conditions, the gate was modeled to open fully when the flow reaching Adams WWTP increased to 45 MGD. The modeled gate closes to a 15% opening after flow at the treatment plant decreases to 30 MGD . The difference in flow required to open and close the gate prevents the gate from opening and closing too rapidly.

3.2 MODEL CALIBRATION

Model calibration is the process of comparing predicted model flows and depths with observed flow data, identifying anomalies with the model data, and correcting and verifying model changes. The process provides a calibrated hydraulic model that can be used to assess existing and future flow conditions, and enable the user to develop and plan capacity upgrade solutions.

3.2.1 Model Calibration Process

The hydraulic model was calibrated against observed dry weather and wet weather flow events recorded during the flow survey period (Table 2.1). The dry weather event, Event X, and the wet weather event, Event A, were selected from the flow survey period between March and May 2000. The survey collected flow and depth data from 63 temporary flow
meters strategically located throughout the collection system to capture flow data from the major trunks and interceptor systems. Table 3.1 summarizes the calibration event data used for this study.

Table 3.1
Event Information

Event Name	Event Type	Event Dates	Rainfall (inches)
Event X	DWF Calibration	April 26 - April 27, 2000	0.0
Event A	WWF Calibration	March 15 - March 22, 2000	2.4
Event E	Design	November 22 - November 30, 2000	4.1

Model calibration is an iterative process involving many model runs and sequential model modifications until satisfactory model fits are obtained. Model fits (i.e., comparison between predicted and observed hydrographs) were assessed for peak flows, total volume, base flows, timing of peaks, and overall hydrograph shape. Overall, the allowable error between peak flows and volumes is 20 percent for critical locations within the network.

Model parameters such as per capita flows, residential and employment diurnal patterns, and groundwater infiltration were refined during dry weather flow calibration. Runoff routing parameters and the effective areas from which runoff into the collection system occurs were determined during wet weather flow calibration. Pump curves were calibrated based on reported observed pumping capacities, reported pump on/off durations, and downstream flow meters, if available.

3.2.2 Design Storm Calibration

Since the "design storm" described in Section 2 of this report is an observed rainfall event, this design event data allowed the model predictions to be verified against observed flow data obtained from LRWU's permanent flow meters. Initial findings revealed differences between the model and the design storm occurring due to changes in hydrological and hydraulic conditions. The overall effect was proportionally lower inflows for large rainfall events, due to surcharging and back ups in the sewer system that prevented rainfall inflow from entering the system.

Based on the design storm calibration results, the model runoff parameters were modified to accommodate the change in hydraulic conditions observed during the design event. The calibration was verified by comparing reported historical overflows to model predicted overflows for this event. Figure 3.3 and Figure 3.4 show the historical overflows and the model predicted overflows, respectively. The model predicts more overflows than historically recorded. This difference may be because some actual overflows that occurred in secluded areas were not witnessed and reported. In addition, leakage from pipes, which could be significant in some areas, is contained within the modeled system, thus resulting in additional manhole overflows.

A detailed account of the model calibration procedures are included in the Model Calibration TM located in Appendix L.
(2)

3.3 HYDRAULIC ANALYSIS

The calibrated model was used to evaluate the hydraulic performance of the trunk system for existing and future flow conditions. This hydraulic analysis was used to identify problems such as spills and capacity constraints and to determine the cause of the hydraulic problems through the use of the hydraulic model.

3.3.1 Hydraulic Model Assumptions

During modeling, hydraulic analysis of sewer networks is typically conducted for existing and future flow conditions. However, since LRWU forecasts a negligible change in population in the service area of the existing WWTPs, the study assumed existing inflows remained the same for the duration of the planning horizon. The following assumptions were applied when developing the model inflows:

- System fully built-out (excluding Little Maumelle)
- No major changes in land use.
- Floodwater assumed not to drain back into the system.
- No net I/I reduction, based on assumed trade-off between sewer system rehabilitation and further deterioration of the pipe network.

3.3.2 Model Inflows

The hydraulic analysis was conducted for dry weather and wet weather flow events. The calibration dry weather flow event (Event X) was considered appropriate for evaluating the worst-case DWF condition as the event included a seasonally high groundwater component. Since the model was calibrated for this event, the model included the groundwater infiltration (GWI).

The "design rainfall event" as described in Section 2 provided the wet weather event for evaluating the hydraulic performance of the system. The design rainfall event is an observed rainfall event with the data captured in a radar data format. The radar data allowed the consultant to model accurately the spatial distribution of rain over the sewer basin. The rainfall distribution showed a 'non-localized' spatial variation of rainfall depth with minimal variation between high and low elevations. The distribution was discussed with LRWU and concluded to be a typical winter event suitable for using as a 'worst-case' design event.

The design rainfall event (Event E) was used in conjunction with calibration DWF event (Event X). This combined the seasonal high GWI with a major (2-year to 5 -year) rainfall event represented the final the wet weather design event.

3.3.3 Hydraulic Model Results

Model runs were conducted for dry weather and wet weather flow conditions, using DWF Event X and WWF Events E, as described above.

The hydraulic model calculated peak flows and flow depths for each modeled pipe segment. The flow depths were expressed as a ratio of pipe diameter (i.e., d/D) and used to evaluate the level of surcharging for the DWF and WWF events. Figure 3.5 and Figure 3.6 show d/D ratios for DWF Event X and Design Event E, respectively, as well as model predicted wet weather overflows. Surcharged pipes are identified by d/D values greater than $1.0(\mathrm{~d} / \mathrm{D}$ >1.0). The d / D ratios of surcharged pipes are computed based on the height of the hydraulic grade line above the pipe invert.

The model distinguishes between pipes surcharged due to capacity limitations (throttle pipes) and pipes surcharged due to backwater. The initial model results identified pipes with limited capacities causing a 'throttling' effect resulting in backwater upstream of the restriction. These pipes referred as throttle pipes possess a hydraulic gradient steeper than the pipe slope.

Pipes surcharged with backwater can mask potential throttle pipes when the downstream restrictions are removed, i.e., pipes upsized. Therefore, the initial model results do not reveal the entire extent of hydraulic problems. These additional problems are exposed and solved during the solution development phase (see Section 4).

3.3.4 Hydraulic Analysis - Description of Problems

Capacity problems described in this section are grouped by LRWU service basins and are listed based on improvement schemes recommended in Section 4. For the LRWU collection system, eliminating overflows was the priority when identifying capacity upgrade solutions. Not all surcharged pipes were recommended for capacity upgrades, particularly where surcharging was relatively minor. For a thorough evaluation of deficient areas, system problem areas were determined from a combination of model results and historical reported overflows due to rainfall. The following capacity problems are described for Design Event E.

Overview

Most of the major capacity-related problems in the LRWU collection system occur in the North 60 service area, Riverfront, older sections of South 60, and selected areas in Little Maumelle. District 142 appears to have no capacity deficiencies in the modeled pipes, while capacity deficiencies in Fourche are relatively minor. A more detailed description of each service area, the twin 60 interceptors, and Adams Field WWTP is presented below.

Little Maumelle

Truss Pipe Region - Significant surcharging and overflows occurred in the truss pipe region of Little Maumelle. This area approximately encompasses the area upstream of manhole 5C116. Maximum d/D ratios in this region ranged from 0.2 to 10 , with most values over 2.5. Approximately 6,500 feet of pipe were surcharged. The model predicted overflows at manhole -5 C 092 and at several manholes surrounding -5 D 014 . The maximum spill volume in this area was predicted to be 0.6 million gallons (MG) from manhole -5D015, with a total spill volume in the region of approximately 1.5 MG .

Pump Station Region - Surcharging due to backwater from the Little Maumelle Pump Station occurred along all major lines upstream of the pump station. Along each of these three lines, surcharging extended to manholes -10-B013, -7B043 and -6-A018, with a total surcharged length of approximately 21,700 feet. Maximum d / D in the surcharged area ranged from 1 to 12.6 . Selected pipes along the middle line showed throttle conditions, indicating that isolated capacity issues may exist along this line in addition to backwater from the pump station. Overflows were predicted at manholes $-8-\mathrm{B} 002,-8-\mathrm{A} 006$, and $-8-\mathrm{A} 012$, with a total spill volume of approximately 7.2 MG .

Riverfront

Jimerson Creek
A combination of limited capacity in the Jimerson Creek region and backwater from the surcharged Rebsamen truck sewer contributed to surcharging and overflows in the Jimerson Creek area.

Upstream Region - The upstream region of this area, above manhole 3C139, showed isolated capacity limitations. The longest section of surcharged pipe in this area extended from 3D110 to 3D161, although other, shorter sections of pipe in this area were also surcharged. The total length of surcharged pipe in this region was approximately 3,900 feet. Maximum d / D in the surcharged areas ranged from 1 to 8 . Overflows were predicted at several manholes around 3D109, with a total overflow volume of approximately 0.7 MG .

Downstream Region - The downstream region of the Jimerson Creek area, above manhole 2B003 on the Rebsamen trunk sewer, showed significant surcharging due to capacity limitations. This surcharging, however, is likely exacerbated by backwater from the Rebsamen trunk sewer. The total length of surcharged pipe in this region was approximately 6,200 feet, with maximum d / D ranging from 1.3 to 7.4 . Overflows were predicted at manholes 1B015, 1B017, 1B018, and 2C005, with a total spill volume of approximately 2.4 MG.

Allsop

Overflows occurred in this area due to capacity limitations and high rates of infiltration. Although overflows in this region were possibly exacerbated by downstream restrictions, this area does have isolated capacity limitations. Surcharging in this region extended from 7E061 to 6D031, a total length of approximately 4,100 feet. Maximum d/D in the surcharged areas ranged from 1.4 to 12 . Overflows were predicted at several manholes fairly even intervals between 6D026 and 7E055, with a total spill volume of approximately 2.5 MG .

Country Club

Surcharging and overflows occurred in this area due to a combination of significant backwater from Cantrell PS and isolated capacity restrictions. Surcharging in this region extended from 9F033 to upstream pipes 8D054, 8E051, and 7F109. Overflows occurred at $8 \mathrm{E} 088,8 \mathrm{E} 046,8 \mathrm{E} 063,8 \mathrm{E} 049$ and 8F003, with a total spill volume of approximately 0.4 MG .

The upstream area of the Country Club region, between manholes 7E042 and 6E172, also showed some surcharging and overflows. Although the model suggested that this area may
have isolated capacity limitations, further investigation indicated that overflows in this area were caused by backwater from downstream capacity limitations.

Cantrell PS

Cantrell Pump Station was shown to have insufficient capacity during significant wet weather events. During Event E, surcharging due to backwater from the pump station extended along the entire Rebsamen trunk sewer. During DWF Event X, surcharging extended up to 9F022 because the first pump activation level is set higher than the invert of the inflow pipe in order to utilize in-line storage. The current pumping capacity of Cantrell PS is less than the capacity of the downstream pipe.

Other

Rebsamen Trunk - Backwater from Cantrell Pump Station combined with flows from the Maumelle service area caused significant surcharging along this line. Surcharging extended the entire length of this trunk sewer from the Maumelle force main discharge location to Cantrell PS. Additional flow will enter this trunk sewer after upstream overflows in Jimerson Creek and Maumelle are relieved. However, as discussed in Section 4, this trunk sewer was not recommended for upgrade, as Cantrell Pump Station upgrades and alternative conveyance options for the flow from Maumelle were determined to be more cost-effective solutions.

Rose Creek - Surcharging and overflows were predicted in the model in certain sections of the Rose Creek area. However, since this area was modeled in a recent study and upgrade schemes were recommended, no further review was performed at this time.

South 60

Rock Creek/Grassy Flats

Backwater from the South 60 interceptor and isolated capacity limitations cause surcharging and overflows from the Rock Creek area to the Grassy Flats area along the parallel lines in the South 60 service area. The total spill volume along the entire length of this line, between manholes 4L012 and -2C002, was predicted to be approximately 10 MG. Additional overflows would likely occur after upstream areas with overflows are upgraded.

Barrow Addition

This region of the South 60 service area shows isolated capacity limitations. Overflows were predicted at manholes 2 K 077 and 2 K 143 , with a total modeled spill volume of 0.13 MG . Maximum d/D ratios ranged from 1.5 to 10 . All but two modeled pipes in this area were surcharged.

Other
Hall High - The model predicted significant overflows and surcharging in the Hall High area. However, the pipes in this region were upgraded after the model was built.

Echo Valley - The model predicted significant overflows and surcharging in the Echo Canyon area. However, the pipes in this region were upgraded after the model was built.

Brodie Creek - The model predicted significant overflows in the Brodie Creek area at manholes $4 \mathrm{~L} 015,4 \mathrm{M} 014,4 \mathrm{~N} 016,3 \mathrm{~N} 055$, and 2 O 025 , with a total spill volume of 8.3 MG . The model also predicted reverse flow from pipe 4L013 to 20024 at certain times during the model simulation. These problems do not indicate isolated capacity deficiencies in this area, but rather are caused by backwater from the South 60 interceptor.

North 60

Coleman Creek

Surcharging in the Coleman Creek area effectively extends from the intersection of the Coleman Creek trunk sewer with the North 60 interceptor up to 5F164.1. Overflows were predicted at several manholes spread throughout this area, with a total spill volume of approximately 9 MG . This flooding and surcharging results from several isolated capacity deficiencies in the Coleman Creek area; these problems are not caused by backwater from the North 60 interceptor.

District 119

Surcharging in District 119 extends from the intersection of the District 119 trunk sewer with the North 60 interceptor up to 6 J 004.1 . Overflows were predicted at manholes 6 K 060 , 6 J 079 , and 6 J 031 , with a total spill volume of 0.15 MG . This flooding and surcharging results from a combination of backwater from the North 60 interceptor and isolated capacity deficiencies in the District 119 area.

Barton

Surcharging predicted at the downstream end of the Barton area is caused by backwater from the North 60 interceptor. In the upstream area of Barton, overflows and surcharging are caused by capacity deficiencies. Surcharging in the upstream region extends from 9J069 to 71007, the farthest upstream modeled pipe. Overflows were predicted at manholes 71009, $71048,71050,8 \mathrm{I} 066,81062$, and 8 I 145 . The total predicted spill volume was approximately 0.27 MG.

Sub-Basin 30100

For this report, Sub-Basin 30100 was assumed to include the line from 15K013 to 151018, which drains into the South 60 interceptor, and the line from 16 K 012 to 15 J 045 draining into the North 60 interceptor. The model predicted surcharging and overflows on both of these lines due to isolated capacity deficiencies. The total spill volume was approximately 0.69 MG.

Granite Mountain

The model predicted surcharging, but no overflows, in the Granite Mountain area. The maximum d / D ranged from approximately 1.1 to 5.6 . This surcharging was caused by capacity limitations, not by backwater from the South 60 interceptor. Overflows due to capacity deficiencies has been reported in this area by LRWU staff.

Fourche

Arch Street PS

Although the Arch Street Pump Station was not modeled, this pump station was represented in the model by a limited discharge orifice. Flow through this orifice was restricted to 35 MGD. Limiting the flow in this area to 35 MGD caused surcharging due to backwater along the Fourche interceptor from the pump station to District 142 . The maximum d / D ranged from 1 to 5 .

Other

The model predicted surcharging in two other areas in the Fourche region. The area surrounding 70012 had maximum d / D ratios between 1 and 3.8 with no overflows. Maximum d / D in the area around 2 Q 016 ranged from 1 to 5.4. The model predicted one relatively small overflow at manhole 2 P 013 , with a spill volume of approximately 3,500 gallons. Although there may be limited capacity in both of these areas, backwater from the Fourche interceptor contributes significantly to the surcharging. If Arch Street PS were upgraded to prevent surcharging in the Fourche interceptor, maximum d/D ratios in these two areas would be reduced to near 1 , and no overflows would occur.

District 142

No capacity limitations were identified in District 142.

Twin 60 Interceptors

The model of the original system shows significant surcharging and some flooding in the upper reaches of the North and South 60 interceptors. The maximum d / D ratios reached 4.6 on North 60 and 3.2 on South 60 with a maximum spill volume of 4.6 MG. Spill volumes and surcharge levels would be considerably higher after upstream capacity deficiencies are corrected. Restricted flow through these sections, particularly on North 60, also cause significant backwater in several pipes draining into these Interceptors. As discussed in the sub-section on the South 60 service area, backwater from South 60 causes reverse flow and overflows in the Brodie Creek area.

Although the model of the existing system shows unrestricted flow through the lower reaches of North and South 60, these reaches would be under capacity if upstream overflows and restrictions were relieved, allowing more flow to be conveyed downstream.

Adams Field WWTP

Although the Adams Field WWTP was not modeled, the WWTP was represented as a limited discharge orifice. Flow through this orifice was limited to 72 MGD to simulate maximum plant capacity. In the model of the existing system, this capacity was sufficient to treat incoming flow. However, because the model lost overflow volume due to upstream restrictions, the peak flow at Adams WWTP would be expected to be significantly higher after upstream capacity limitations are corrected.

This section summarizes alternative projects that address the capacity issues identified during computer modeling for the LRWU wastewater collection system. The objective of the hydraulic model were to predict flow conditions within Little Rock's trunk sewer system during the design storm event and identify capacity improvements that would eliminate overflows, as described in Section 3. The model, which included each of Little Rock's six sewer basins, identified capacity problems in the collection system. From this model output data, potential alternatives were developed to address the capacity problems. These alternatives included paralleling existing deficient sewers, replacement of undersized sewers with larger diameter pipes, upgrading capacity for existing pumping and treatment facilities and providing additional collection system capacity by conveying wet weather related flows to storage facilities. After the capacity upgrade alternatives were developed, each alternative was evaluated against a set of criteria including project feasibility, construction methods, community issues, long term flexibility, and cost.

4.1 BACKGROUND

The Little Rock wastewater collection system consists of six sewer basins: Fourche, North and South 60, Maumelle, District 142 and Riverfront. The wastewater flows from these basins are treated by two existing plants, the Adams Field Wastewater Treatment Plant (WWTP) and the Fourche Creek Wastewater Treatment Plant. The Adams Field WWTP is located east of the Little Rock Airport and treats flows from the Maumelle and Riverfront basins and a portion of the flows from the North 60 and South 60 basins. The Adams Field WWTP has a design flow of 36 MGD with a maximum capacity of 72 MGD. The Fourche Creek WWTP is located farther to the south and at the east-end of Frazier Park Road and treats flows from the District 142 basin and a portion of flow from the North 60 and South 60 basins. The Fourche WWTP has a design flow of 16 MGD with a maximum capacity of 38 MGD. Both plants have permits to discharge into the Arkansas River regulated by the Arkansas Department of Environmental Quality (ADEQ). Studies have been completed that identify proposed capacity upgrades for both WWTPs. Identified improvements include a capacity increase to 94 MGD with equalization basins having a total volume of 25 MG for the Adams Field WWTP, and a capacity increase to 60 MGD for the Fourche Creek WWTP. These proposed capacity upgrades to the existing Adams Field and Fourche Creek WWTPs are detailed in Appendix \mathbf{E} and Appendix F, respectively.

As part the data collection process for capacity system evaluation three existing pump stations were studied: the Cantrell Pump Station located in the Riverfront Basin having a current maximum pumping capacity of 25 MGD; Little Maumelle Pump Station located in the Maumelle Basin with a capacity of 5.6 MGD and; Arch Street Pump Station located in the Fourche Basin with a current capacity of 38 MGD.

At present, all wastewater from the Maumelle Basin is pumped by the Little Maumelle Pump Station into the Adams Field WWTP collection system. The pump station discharges via a 24-inch force main into trunk lines servicing the Riverfront Basin at the upstream connection located north of the Jimerson Creek Area. This flow travels through the Riverfront gravity
trunk lines to the Cantrell Pump Station, located south of the Country Club Area. The Cantrell Pump Station then pumps its flow through a 30 -inch force main which discharges into trunk lines that eventually enter Adams Field WWTP. The Maumelle and Riverfront Basins comprise the total flow Adams WWTP receives from the northern part of Little Rock. Wastewater from the southern part of Little Rock enters Adams WWTP via Twin 60 -inch Interceptors that run downstream from west to east along the borders for Fourche, North 60 and South 60 Basins. The majority of the flow impacting the Fourche Creek WWTP is diverted to the plant by a gate structure, known as the Interstate Gate Park Control Facility, installed in the Twin 60 -inch Interceptors located upstream of the Arch Street Pump Station. The amount of flow diverted by the gate is regulated by operational limits in the Adams Field WWTP. As the flow reaches capacity limits, as explained in Section 3.1.5, the gate automatically adjusts to divert a greater amount of flow to the Fourche WWTP via the Arch Street Pump Station and its 42 -inch force main. The Fourche WWTP also receives minor flows from tributary areas located upstream of College Pump Station, which discharges into the 42-inch Arch Street force main.

4.2 IDENTIFICATION OF WASTEWATER SYSTEM ALTERNATIVES

Five alternatives to correct Little Rock wastewater system deficiencies were identified for further review and evaluation. Each alternative represents an overall view of Little Rock's wastewater system and to varying degrees incorporates the following three capacity upgrades:

- increased wastewater conveyance capacity
- wet weather water storage capabilities, and
- additional treatment facilities.

Each of these capacity upgrades is discussed below.

4.2.1 Increased Conveyance Capacity

Alternatives for increased conveyance capacity were modeled into the system by substituting existing lines determined to be undersized with new larger diameter pipes. Additional capacity upgrades were also included for the Cantrell and Arch Street pump stations to accommodate the modeled flows. In sizing new pipes, no reduction in flow was assumed from comprehensive line rehabilitation for I / I abatement (Section 6 provides a discussion of I/I abatement). Eleven improvement projects to provide additional hydraulic capacity were identified with the hydraulic model described in Section 3. Table 4.1 lists a summary of the trunk system improvement projects with approximate lengths, pipe size and capital costs for each. The sizes, capacities, and costs listed in the table and discussed in the following text were estimated assuming the existing pipe would be replaced with new pipe segments. Figure 4.1 shows the general location for each of the proposed line replacements. It should be noted that modeled results indicate that these eleven sewer trunk improvements are required in order to eliminate overall system deficiencies. Hence these projects have been identified as common improvements requiring integration into the five overall system alternatives that were evaluated and discussed later in this section.

Table 4.1
 Proposed Trunk Upgrades

Project Name	Location	Description of Upgrades	Estimated Capital Cost	
Allsop	Hawthorne Rd, Van Buren St, Country Club Blvd, Spruce St	7,800 linear feet 18-inch pipe	\$	1,550,000
Barrow Addition	W 35th St, W 36th St, Potter St, Walker St, Gilman St	5,600 linear feet 18 to 24 -inch pipe	\$	1,220,000
Barton	W 17th St, W 15th St, W 14th St, Maple St	10,600 feet 15 to 21 -inch pipe	\$	2,290,000
Coleman Creek	Coleman Creek, Polk St, W 10th St, W 28th St, Asher Ave	26,200 feet 18 to 36 -inch pipe	\$	8,020,000
Country Club	Cantrell Road, Rebsamen Park Rd	7,500 linear feet 30 to 54 -inch pipe	\$	3,210,000
District 119	W 34th St, Mary St, Boulevard Ave, W 22nd St	5,500 linear feet 24-inch pipe	\$	1,570,000
Granite Mountain	Springer Blvd	2,900 linear feet 18-inch pipe	\$	570,000
Jimerson Creek	Near Foxcroft Rd, Tallyho Ln, Youngblood Rd, Pine Valley Rd	11,500 linear feet 15 to 36 -inch pipe	\$	3,060,000
Maumelle (a)	Near Hinson Rd, Jennifer Dr	24,500 linear feet 15 to 36 -inch pipe	\$	6,540,000
Rock Creek/ Grassy Flats (b)	Rooney Parham Rd, Cunningham Lake Rd, Barrow Rd, Serenity Dr, Grassy Flat Creek	57,800 linear feet 21 to 60 -inch pipe	\$	23,650,000
$\begin{aligned} & \text { Sub-Basin } \\ & 301000 \text { Area } \end{aligned}$	Near Security Ave, Bolton St	7,500 linear feet 15 inch pipe	\$	1,420,000
		Total:	\$	53,100,000
72-inch Parallel Trunk Line				
72-inch Line	From University to Adams Field WWTP	45,800 linear feet 72-inch Trunk	\$	30,360,000

(a) An alternative for Maumelle would be to achieve significant inflow and infiltration reduction in the Upper Hinson area
(b) An alternative for the Rock Creek/Grassy Flats area would be to replace parallel pipes with a single larger pipe and reduce inflow and infiltration upstream of the Grassy Flat Creek area.

Each of these trunk system improvements is briefly described below, by service area. The proposed trunk upgrades address the capacity deficiencies described in Section 3. Detail lists of the specific pipes recommend for upgrade are included in Appendix C. The lists include the pipe reference, length, suggested replacement size, and estimated replacement cost for each pipe segment recommended for upgrade.

Little Maumelle
The recommended capacity improvements in the Little Maumelle service area consist of approximately 4.5 miles of 15 to 36 -inch replacement pipe. The existing pipe sizes in this line range from 10 to 24 -inches. As seen on Figure 4.1, this improvement scheme stretches from the Upper Hinson area to the Little Maumelle Pump Station. Although two separate problem areas, Upper Hinson and the Maumelle Pump Station region, were identified in Section 3, overflow relief due to proposed capacity improvements in the Upper Hinson area would result in additional downstream capacity limitations. Therefore, capacity upgrade were necessary along the entire length of this trunk sewer. As indicated in Table 4.1, ignificantly reducting I / I in the Upper Hinson area could reduce the pipe length requiring capacity upgrades.

Flooding and surcharging associated with backwater from the existing Little Maumelle Pump Station along the other trunk sewers was relieved by assuming sufficient future storage and treatment capacity would be provided by the new Maumelle WWTP.

Riverfront

Jimerson Creek
Approximately 2 miles of pipe from 3D066 to 2B002 are recommended for capacity upgrades in this area. The existing 10 to 24 -inch pipes are suggested for upgrade to 15 to 36 inch to provide sufficient capacity for peak wet weather flows.

Allsop
This scheme refers to pipes from 7E001.1 to 5D096.1. Approximately 1.5 miles of 8 to 12 inch diameter pipe are recommended for upgrade to 18 -inch diameter pipe to relieve capacity-related overflows.

Country Club
This scheme refers to pipes from 10G069.1 to 8E049.1, from Allsop to the Cantrell pump station. Replacement size of 30 to 54 inch diameter is recommended for approximately 15 miles of existing 24 to 42 -inch diameter pipe. These upgrades provide sufficient capacity for additional flow resulting from upstream capacity upgrades as well as previously identified localized capacity limitations.

South 60

Rock Creek/Grassy Flats
This scheme refers to the parallel trunk sewer stretching from the discharge into the South 60 nterceptor (4L012.1) to the truss pipe region in the northwest area of the South 60 service area. Recommended upgrades provide sufficient capacity for several existing isolated capacity problems and for additional flow resulting from upgrades of the Echo Valley and Hall High areas. For modeling purposes, both parallel pipes were upgraded from 15 to 48inch diameter pipes to 21 to 60 -inch diameter pipes, a total length of approximately 11 miles Estimated costs listed in Table 4.1 and in the Appendix B are based on replacement of both parallel pipes. However, a single replacement pipe providing equivalent additional capacity would be an alternate, less expensive solution.

Barrow Addition

Overflows resulting from isolated capacity restrictions in this region were relieved in the model with the replacement of existing 12 to 18 -inch pipes with new 18 to 24 -inch pipes. A total length of approximately 1 -mile of pipe is recommended for upgrade.

North 60

Coleman Creek
Outside of Twin 60 interceptor system, Coleman Creek requires the most extensive upgrades in the North 60 service area. Approximately 5 miles of pipe are recommended for upgrade from the existing 8 to 30 -inch diameter to 18 to 36 -inch diameter pipes.

District 119

Approximately 1 mile of pipe is recommended for upgrade in District 119, stretching from the North 60 interceptor to 6 J 005.1 . Upgrade from the existing 15 -inch diameter pipes to 24 inch diameter pipes provides sufficient capacity for peak wet weather flows.

Barton

Approximately 2 miles of pipe in the Barton area require upgrade from 10 to 15 -inch diameter pipe to 21 -inch diameter. These recommended upgrades stretch from 9 K 034.1 to 71007.1

Sub-Basin 30100
For this report, the Sub-Basin 30100 area was assumed to include the line from 15 K 013.1 to 15 I 018.1 draining to the South 60 interceptor and the line from 16 K 012.1 to 15 J 045.1 draining to the North 60 interceptor. A total length of approximately 1.5 miles of pipe is recommended for upgrade to 15 -inch diameter pipe to relieve modeled overflows.

Granite Mountain

Approximately 0.5 mile of pipe is recommended for upgrade in the Granite Mountain area. A new 18 -inch diameter pipe is recommend for replacement of the existing 12 -inch pipe. The hydraulic model predicted surcharging but no flooding in this area. However, these pipes are recommended for upgrade because of reported capacity-related overflows.

Twin 60 Interceptors

The existing Twin 60 -inch Interceptors that convey the wastewater from the southern part of Little Rock experience line surcharging that contributes to upstream system overflows during severe storm events. To achieve the additional conveyance capacity needed to alleviate these surcharge conditions, a new 72 -inch trunk line that parallels the Twin 60s could be installed. Since the remaining four capacity upgrade alternatives require varying volumes of temporary wastewater storage (storm water I / I detention) to control surcharging in the Twin 60 s , the required length of proposed 72 -inch trunk line would be reduced for two of the evaluated alternatives and completely eliminated for the remaining two.

4.2.2 Wet Weather Storage Capabilities

Several alternatives evaluated included off-line wet weather storage as an option to reduce downstream conveyance capacity requirements that occurs during wet weather events. This technology would utilize partially buried lagoons to store estimated volumes of wet weather flow calculated by the hydraulic model for the design storm event. Wastewater surcharging in the Twin 60s during a storm event would be taken out of the interceptor(s) by means of an in-line overflow weir structure(s). The diverted surcharging flow would then be conveyed through a gravity line(s) to the storage site and pumped into a series of tandemly filled lagoons. Once the wet weather surge occurring in the main trunk system had passed, stored wastewater in the lagoons would be returned to the main system by gravity or pumping (as needed), and the lagoons would be cleaned.

4.2.3 Additional Treatment Plant

Currently, Maumelle Basin wastewater flows to the existing Little Maumelle Pump Station that pumps to the Cantrell Pump Station which pumps its flow into the gravity sewer system that feeds the Adams Field WWTP. Each alternative discussed in this section of the report propose the elimination of the Little Maumelle Pump Station and construction of a new reatment plant in the Maumelle Basin. The engineering and cost report for this new reatment plant is detailed in the "Little Maumelle River Subbasin Sewerage Study" developed by Tanner Engineering Consultants, in affiliation with Carter Burgess: This report, contained in Appendix G, describes the recommended process facilities and equalization basins needed for the treatment plant and estimated capital cost for construction.

4.3 ALTERNATIVE IMPROVEMENT PROJECTS

4.3.1 Costs

Estimated costs were developed for each alternative based on conceptual designs for facility improvements. These costs were developed for comparison purposes and are not intended to be detailed design cost estimates. Where possible, standard materials and equipment were assumed for costing purposes. Material and construction costs were based on local prices derived from similar types of construction projects completed in the Little Rock Area; other costs were estimated by using the Engineering News Record (ENR) Construction Cost Index adjusted for year 2001. These costs do not include land right-of-way acquisition construction management and inspection, legal work and financing fees, and operation and maintenance costs. Capital costs do include 25% for contingencies and engineering. No inflation factors were used in the calculations.

4.3.2 Alternatives

Through a series of workshops with Wastewater Utility staff and a Little Rock Citizen's Group, five alternatives (A1, B1, B2, C1 and C2) to resolve capacity deficiencies for the entire Little Rock wastewater system were developed. Alternative A1 proposes capacity upgrades to convey the entire collection system flows to the Adams Field, Fourche Creek and
the proposed Maumelle WWTPs. Alternatives B1 and B2 employ large storage facilities located at the upper end of the Twin 60 -inch Interceptors in lieu of the proposed parallel 72inch line. Alternatives C 1 and C 2 propose a combination of partial storage and partial conveyance through the proposed 72 -inch parallel line to eliminate system deficiencies. This section discusses the significant improvement projects associated with each of these alternatives.

Alternative A1: Conveyance and Treatment. This alternative incorporates a philosophy of conveyance of all flows to the wastewater treatment plants. This alternative consists of the following capacity upgrades:

- construct a new treatment plant in the Little Maumelle Basin,
- increase the treatment capacity of the Adams Field WWTP from 72 MGD to 94 MGD,
- increase the treatment capacity of the Fourche Creek WWTP from 38 MGD to 60 MGD,
- increase the pumping capacity of the Arch Street Pump Station from 38 MGD to 60 MGD,
- increase the pumping capacity of the Cantrell Pump Station from 25 MGD to 40 MGD,
- construct a new 12 MGD Jimerson Creek Pump Station,
- construct a new 1.0 MGD I-430 booster pump station, and
- install eleven trunk lines listed in Table 4.1.

Under Alternative A1 (Figure 4.2), the Maumelle Basin wastewater flows would be treated and discharged by a new plant located within the Maumelle Basin along the Little Maumelle River. This new plant would alleviate the surcharging problems in the existing trunk system along the Riverfront Basin from Maumelle to the Adams WWTP and reduce the capacity problems at the Cantrell Pump Station. Despite the flow reduction provided by the new plant, the model revealed that the existing Riverfront system would continue to surcharge during the design storm event. In response to this model identified deficiency, this alternative included installation of an additional pump station located at the east-end of the Jimerson Creek Area and a booster pump station located near the I-430 connection along the river. The proposed Jimerson Pump Station (12 MGD) would divert wet weather flow from the Jimerson Creek Area from the Riverfront system by conveying its effluent to the new Maumelle WWTP. This proposed station would be configured so that it would connect to the existing 24 -inch force main, presently being used by the Maumelle Pump Station, in order to return Jimerson Creek flow to the Maumelle Basin. During dry weather conditions, the wastewater from the Jimerson Pump Station service area would flow through the Riverfront system to the Adams WWTP. Tributary flow into the new I-430 Pump Station (1 MGD) could either be boosted into the existing 24 -inch force main or returned to the new Jimerson Pump Station for conveyance based on the conditions described above.

For the southern part of Little Rock, a proposed 72 -inch trunk line would parallel the entire length of the existing Twin 60 -inch Interceptors providing additional conveyance capacity. Although the proposed Maumelle WWTP would reduce the amount of flow to the Adams Field WWTP, modeled results indicate that the following additional capacity upgrades are required to address the collection system deficiencies:

- increase the Adams Field WWTP capacity to 94 MGD with 25 million gallon equalization basin volume(Appendix \mathbf{E}),
- upgrade the Arch Pump Station to 60 MGD , including $41,500 \mathrm{LF}$ of new 30 -inch parallel force main,
- upgrade Fourche Creek WWTP to treat 60 MGD (Appendix F)
- install the 72 -inch parallel trunk from Adams to the west-end of the Twin 60 s , and
- install eleven trunk lines listed in Table 4.1.

Estimated capital costs for each of the project improvements in Alternative A1 are listed in Table 4.2.

Table 4.2

Estimated Capital Costs for Alternative A1

Type of Project	Description	Costs (\$ million)
Trunk Sewer	Trunk Line Improvements (Table 4.1)	$\$ 53.1$
Upgrades	72-Inch Parallel Line (45,772 feet)	$\$ 30.4$
	Cantrell (40 MGD)	$\$ 4.6$
Pump Station	Arch (60 MGD), w/41,500 LF of 30-inch FM	$\$ 12.6$
Improvements	Jimerson (12MGD)	$\$ 2.5$
	I-430 (1 MGD)	$\$ 0.4$
Treatment Plant	Maumelle (4 MGD), w/20 MG Basins	$\$ 19.9$
	Adams Field (94 MGD), w/25 MG Basins	$\$ 24.0$
	Fourche Creek (60 MGD)	$\$ 23.4$
(Total		
	$\$ 171.0$	

Alternative B1: Large Volume Storage with Arch Street Pump Station and Fourche

 WWTP Improvements. Alternatives B1 and B2 apply a different strategy for resolving modeled system deficiencies for the southern part of Little Rock. These alternatives would atilize large volume storage facilities, described in Section 4.2.2, to divert excess storm water from the Twin 60 -inch Interceptors rather than increasing conveyance capacity by installing a parallel 72 -inch line. Alternative B1 (Figure 4.3) proposes the construction of a 78 MG storage facility located at the upper end of the Twin 60 s , immediately downstream of the District 119 Area. This scenario provides sufficient flow reduction to the Adams WWTP to eliminate the need for a 72 -inch parallel line and for the Jimerson Creek and I-430 Pump Stations. However, additional improvements increasing capacities at the Arch Street Pump Station from 38 to 45 MGD, Cantrell Pump Station from 25 to 40 MGD and Fourche Creek WWTP from 38 to 45 MGD would be required. Additionally, the installation of the eleven trunk lines noted in Table 4.1 would be required. Estimated capital costs are shown below Table 4.3.

Table 4.3

Estimated Capital Costs for Alternative B1

Type of Project	Description	Costs (\$ million)		
Trunk Sewer	Trunk Line Improvements (Table 4.1)	$\$ 53.1$		
Upgrades	Cantrell (40 MGD)	$\$ 4.6$		
Pump Station	Arch (45 MGD)	$\$ 1.8$		
Improvements	Maumelle (4 MGD), w/10 MG Basins	$\$ 18.9$		
Treatment Plant	Adams Field (94 MGD), w/25 MG Basins	$\$ 24.0$		
Improvements	Fourche Creek (45 MGD)	$\$ 12.0$		
Storage Facilities	78 MG	$\$ 50.6$		
Total				$\$ 164.8$

Alternative B2: Large Storage. Alternative B2 (Figure 4.4) also utilizes a large volume storage facility at the west-end of the Twin 60 s to relieve system deficiencies for the south Little Rock collection system. Modeled results indicated that a 79 MG storage facility would eliminate the need for increased pumping capacity in the Arch Street Station and increased treatment capacity for Fourche WWTP. With exception of the increased storage volume proposed in this Alternative and elimination of the need for capacity improvements to the Arch Street Station and Fourche WWTP, all other improvements noted for Alternative B1 would be required to resolve system deficiencies. Estimated capital costs are listed below in Table 4.4.

Table 4.4
Estimated Capital Costs for Alternative B2

Type of Project	Description	Costs (\$ million)
$\begin{array}{l}\text { Trunk Sewer } \\ \text { Upgrades }\end{array}$	Trunk Line Improvements (Table 4.1)	$\$ 53.1$
$\begin{array}{lll}\text { Pump Station } \\ \text { Improvements }\end{array}$	Cantrell (40 MGD)	$\$ 4.6$
Treatment Plant	Maumelle (4 MGD), w/10 MG Basins	$\$ 18.9$
Improvements	Adams Field (94 MGD), w/25 MG Basins	

Alternative C1: Reduced Storage with Conveyance and Improvements to Arch Street Pump Station and Fourche WWTP. The last two Alternatives, C1 and C2, combine storage and conveyance improvements to relieve surcharge conditions for the southern part of the Little Rock collection system. Both Alternatives require construction of the new Maumelle WWTP, increased treatment capacity for the Adams Field WWTP to 94 MGD, increased

capacity for the Cantrell Pump Station to 40 MGD, and installation of the eleven area trunk lines noted in Table 4.1. The significant differences between alternatives for the B and C scenarios are the amount of storage volume diverted from the Twin 60 -inch Interceptor system and partial use of the proposed parallel 72 -inch trunk line. While Alternatives B1 and B2 utilize large storage volumes to eliminate the need for the 72 -inch parallel line, Alternatives C 1 and C2 utilize a combination of reduced storage volume and improvements for additional conveyance capacity. Alternative C1 (Figure 4.5) proposes installation of a 28 MG storage facility located in the same area as proposed for similar facilities noted in Alternatives B1 and B2. The model shows that with the reduced level of storage, the 72-inch parallel line must be installed from the Arch Street Pump Station upstream to the Rock Creek Trunk line, for added conveyance capacity and surcharge relief. This Alternative also requires increasing Arch Street Station capacity from 38 to 45 MGD and the Fourche WWTP capacity from 38 to 45 MGD. Capital costs for Alternative C1 are listed in Table 4.5.

Table 4.5

Estimated Capital Costs for Alternative C1

Type of Project	Description	Costs (\$ million)		
Trunk Sewer	Trunk Line Improvements (Table 4.1)	$\$ 53.1$		
Upgrades	72-Inch Parallel Line (22,900 feet)	$\$ 15.2$		
Pump Station	Cantrell (40 MGD)	$\$ 4.6$		
Improvements	Arch (45 MGD)	$\$ 1.8$		
Treatment Plant	Maumelle (4 MGD), w / 10 MG Basins	$\$ 18.9$		
	Adams Field (94 MGD), w / 25 MG Basins	$\$ 24.0$		
	Fourche (45 MGD)	$\$ 12.0$		
Storage Facilities	28 MG	$\$ 27.0$		
Total				$\$ 156.6$

Alternative C2: Reduced Storage with Conveyance. Alternative C2 (Figure 4.6) proposes an increase in storage volume to 33 MG. Model results indicated that increasing storage still requires the added conveyance capacity provided by the 72 -inch parallel, from Arch Street Station upstream to the Rock Creek trunk, in order to relieve surcharge conditions in the Twin 60 s . However, the increase in storage volume eliminated the need to increase capacities for the Arch Street Station and Fourche WWTP. All other capacity improvements noted in Alternative C1 are required for this Alternative. Capital costs for Alternative C2 are listed in Table 4.6.

Table 4.6

Capital Costs for Alternative C2

Type of Project	Description	Cost (\$ million)
Trunk Sewer Upgrades	Trunk Line Improvements (Table 4.1) 72-Inch Parallel Line (22,900 feet)	$\begin{aligned} & \$ 53.1 \\ & \$ 15.2 \end{aligned}$
Pump Station Improvements	Cantrell (40 MGD)	\$4.6
Treatment Plant Improvements	Maumelle (4 MGD), w/ 10 MG Basins Adams Field (94 MGD), w / 25 MG Basins	$\begin{aligned} & \$ 18.9 \\ & \$ 24.0 \end{aligned}$
Storage Facilities	33 MG	\$28.9
	Total	\$146.9

4.3.3 City and Public Participation

Alternatives for capacity assurance projects were reviewed by representatives from the Wastewater Utility and a Little Rock Citizens Advisory Group (see Section 7). The Utility and Citizens Advisory Group (CAG) met in separate groups to review proposed improvements, provide technical input, identify city interests, and incorporate community values. The information provided to the Utility and CAG to evaluate each alternative included the model results, proposed improvement projects, and cost figures developed by MWH and Crist Engineering. This information included the following components:

- descriptions of the wastewater model developed for the study and model results,
- construction technology available for installation and repair of systems
- permitting and technical requirements for each alternative,
- and preliminary costs.

Evaluation Matrix

The CAG developed an Evaluation Matrix containing the following eight categories for evaluation and consideration of the five alternative scenarios

1. Environmental Concerns

Citizen Awareness - Social Impact Esthetic

Financial

Technical Concerns
Regulatory Concerns
Construction Issues
Growth Planning
Property Value
Each evaluation category was assigned a weight from 0 to 3 to indicate a level of importance the CAG placed on the item as it might impact the community. A maximum weight of 3 indicated that major consideration should be given to the item, while a weight of 1 indicated
minimum consideration. Any category given a weight of 0 indicated a consensus that the category should not be given consideration in the alternative evaluation. For each of the eight categories listed above, additional criteria described in descending levels of feasibility of each improvement's implementation were assigned. As shown in Table 4.7, a selected weight of 3 would indicate that an alternative was deemed to have the greatest level of feasibility for installation with the least impact on the community, while a weight of 1 would indicate the lowest level of feasibility with increased adverse affects to the community. Again, a weight of 0 would preclude the assigned criteria from further consideration during the ranking process. Total ranking is based on the selected level of importance for each category multiplied by the criteria ranking for each alternative improvement. Scores ranking each alternative were totaled for all eight categories with the highest total indicating the most preferred alternative by the CAG

To compare the improvements proposed in the five alternatives and to simplify the ranking process, Little Rock's wastewater system was separated into a north and a south collection system. The north area included improvements for the Little Maumelle and Riverfront Basins. The south area consisted of improvements located in the North and South 60, Fourche, and District 142 Basins. Additionally, the matrix was subdivided by critical elements for alternative improvements related to total storage, partial storage and conveyance, and total conveyance scenarios for the south area, and conveyance versus constructing the new Maumelle WWTP in the north. The summary of the Citizens Advisory Group ranking is shown in Table 4.8.

It should be noted that although the Citizens Advisory Group developed the Evaluation Matrix the Utility concurred with the general approach and the content for each item discussed. While conducting their evaluation, the Utility incorporated additional considerations such as scheduling, budgeting for construction, and implementation of the selected improvements.

4.3.4 Selected Alternative

Based on the selection criteria and evaluation methodology presented above, the preferred capacity upgrade alternative for south Little Rock was to utilize total conveyance, i.e, installation of the 72 -inch gravity trunk line, pump station and WWTP capacity upgrades rather than wet weather storage. Matrix categories related to permitting issues, site aesthetics, environmental and odor concerns were the major factors that depressed the rankings for the storage alternatives.

The Citizens Advisory Group also expressed its concerns over the construction of a new Maumelle WWTP in north Little Rock. Environmental and community concerns were identified as the pertinent issues. Despite the CAG's slightly higher ranking (24 versus 23) favoring an option to convey all flow from the Maumelle and Riverfront Basins to the Adams WWTP, the Utility chose an alternative that included construction of the new treatment plant. The compelling factor was the cost differential of $\$ 33.2$ million between the two alternatives, required to convey wastewater from Maumelle through the Riverfront Basin and onto the Adams WWTP. Another disadvantage of the CAG conveyance option was that no additional space is available to expand facilities to increase treatment capacities at the Adams Field
Table 4.7
valuation Criteria

								Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0.00 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						
								硅
	1-	N	m	\checkmark	in	\bigcirc	-	∞

Table 4.8
Evaluation Matrix

Note:

1. Represe
2. Represe
3. Ranking

Section 4 - Alternative Improvement Projects

WWTP. The facility is land locked and improvements identified by the previous study completed for the plant (Appendix E), increasing its capacity to 94 MGD, would essentially take up all remaining space for the site. Hence, delivering wastewater from Maumelle to Adams WWTP as part of a total conveyance option would exceed the limits of 94 MGD treatment and 25 MG of equalization/storage capacity. Based on the criteria described above, Alternative A1 was selected as the preferred alternative for meeting Little Rock's overall wastewater system capacity needs

Section 5 Recommended Improvement Plan

This section presents the implementation schedule for the recommended improvements and additional recommendations for capacity assurance for the LRWU wastewater system. The improvement plan includes estimated capital costs for a 15-year implementation schedule.

5.1 PROJECT COSTS

Among the LRWU wastewater collection system capacity improvement alternatives presented in Section 4, Alternative A1 was selected for implementation. Preliminary construction cost estimates were prepared for each capacity improvement project described under Alternative A1. Pipeline project costs based on conceptual designs were developed from construction projects for similar installations recently completed in the Little Rock Area. Costs for pump station upgrades and/or replacement were obtained from the Engineering News Record (ENR) "Construction Cost Index" for 1994 Los Angeles, California, for similar projects. Applying a conversion factor of 0.98 the costs, pump station estimates were adjusted to comply with a national average based on October 2001 dollars. After determining the base construction cost for each project, an allowance of 25% for contingencies and engineering was added to develop the capital cost estimates. The estimated capital costs for treatment plant improvements were derived from studies completed for the proposed Maumelle WWTP (Appendix G), the Adams Field WWTP (Appendix E), and the Fourche WWTP (Appendix F). All costs should be considered budgetary planning level estimates with an estimated accuracy of -30 to +50 percent. The estimated costs do not account for inflation between the time of estimate development and the anticipated construction. The pipeline installation estimates do not include costs for land right-of-way acquisition, construction management, inspection, legal work, financing fees, operation and maintenance costs. These costs should be reviewed and revised based on the detailed information developed during design.

5.2 PROJECT PRIORITIZATION AND SCHEDULE

The proposed schedule for construction of the recommended capacity improvement projects is based on a 15 -year implementation plan. The capacity upgrade projects were prioritized and scheduled based on the severity of existing capacity deficiencies, the extent of potential surcharge during the design storm condition, planning flexibility, and funding constraints.

Projects proposed to address existing trunk line capacity deficiencies include the eleven trunk sewer line replacements (the Alsop, Barrow Addition, Barton, Coleman Creek, Country Club, District 119, Granite Mountain, Sub-Basin 30100, Jimerson Creek, Maumelle and Rock Creek trunk lines), and the installation of the parallel 72-inch trunk line extending from Adams WWTP upstream to the west end of the existing Twin 60 s . The pump station capacity improvement projects include upgrades for the Cantrell Pump Station and Arch Street Pump Station with its new parallel force main, and new pump stations for the Jimerson Creek and I-430 areas. Treatment capacity upgrades include construction of the new Maumelle WWTP, and expansions of the Adams Field and the Fourche Creek WWTPs.

Trunk Line Improvements. With exception of the new trunk lines required for the Jimerson Creek, Rock Creek and Coleman Creek Areas, new trunk line installations listed in Table 4.1 are
scheduled to occur between years 2008 and 2012. Reoccurring historical overflows verified by the hydraulic model results indicate a significant need to provide additional sewer capacity for these areas. Jimerson Creek and Coleman Creek trunks are scheduled to occur between 2003 and 2006. Rock Creek improvements are scheduled to occur between years 2008 and 2017 with the 72 -inch parallel trunk scheduled between 2008 and 2016. This sequencing prioritizes the most critical trunk replacement projects. It also provides the Utility the option to perform trunk rehabilitation and system monitoring in order to minimize the level of needed future trunk replacement. Table 5.1 indicates the schedule for installation of all gravity trunk sewer improvements.

Table 5.1
Schedule for Trunk Line Improvements

Project Name	Begin Planning/Design	Complete Construction
Alsop	2011	2012
Barrow Addition	2011	2012
Barton	2010	2012
Coleman Creek	2003	2006
Country Club	2010	2012
District 119	2011	2012
Granite Mountain	2012	2012
Sub-Basin 30100	2011	2012
Jimerson Creek	2003	2005
Maumelle	2008	2011
Rock Creek	2008	2017
Upper 72-inch Parallel Line (a)	2008	2011
Lower 72-inch Parallel Line (b)	2013	2016

(a) Upper reach for the 72 -inch line runs from Arch Street PS upstream to the west-end of the existing Twin 60 -inch Interceptors.
(b) Lower reach for the 72-inch line runs from the Adams WWTP upstream to Arch Street Pump Station.

Pump Station Improvements. With exception of the Arch Street facility, improvements for upgrading and installing new pump stations are scheduled to occur between years 2008 and 2015. The capacity upgrades to the Arch Street Pump Station have been prioritized since the facility represents the major conveyance component for the Fourche Creek WWTP system. The station currently experiences operational problems limiting the capacity of Fourche's collection system. Although the facility's existing 42 -inch force main was recently repaired to correct problems related to entrapped air in the line, the station itself is in need of additional internal mechanical upgrades. These upgrades are scheduled to occur during years 2005 to 2007. Although the Cantrell Pump Station experiences operational problems, needed improvements for this facility received a lower priority and were scheduled for installation from years 2008 to 2010. Also, improvements to the Arch Street and Cantrell Pump Stations were not scheduled concurrently because of financial constraints. The construction of the Jimerson and I-430
facilities was also scheduled from 2008 to 2010. Table 5.2 summarizes scheduled improvements for all pump stations and their associated force mains. It should be noted that the 30 -inch parallel force main intended to support capacity improvements for Arch Street has been scheduled for installation much later than the station improvements, from years 2015 to 2016. Although the new parallel force main is required for the ultimate conveyance capacity, the existing 42 -inch force main can support a maximum flow of approximately 45 MGD . Since the planned Arch Street Pump Station improvements add 7 MGD of additional conveyance capacity prior to the force main installation, it was believe that scheduling the new force main installation could be delayed.

Table 5.2
Schedule for Pump Station Improvements

Project Name	Begin Planning/Design	Complete Construction
Arch Street PS (60 MGD)	2005	2007
30-inch Force Main (for Arch)	2015	2016
Cantrell PS (40 MGD)	2008	2010
Jimerson Creek PS (12 MGD)	2008	2009
24-inch Force Main (for Jimerson)	2008	2009
I-430 PS (1 MGD)	2008	2009

Treatment Plant Improvements. Prior to the development of the hydraulic model, engineering studies were completed that identify proposed capacity upgrades for both the Adams Field and the Fourche Creek WWTPs. These capacity upgrades include a capacity increase from 72 MGD to 94 MGD for the Adams Field WWTP and a capacity increase from 38 MGD to 60 MGD for the Fourche WWTP. The Adams study also includes equalization basins having a total volume of 25 MG . The proposed capacity upgrades are provided in greater detailed in Appendix \mathbf{E} and Appendix F.

At present, during storm events, the Adams Field WWTP becomes overloaded due to high flow conditions. Since the automatic gate upstream of the Arch Pump Station is regulated by the amount of flow occurring at Adams Field WWTP, the line surcharge conditions in the Twin 60s and upstream tributary areas are a function of the capacity limitations experienced by the Adams Field Plant. Due to permitting issues and the need for immediate response to system overflows, scheduling for the existing plant improvements was slated to start in 2003 with completion in 2005. Small upgrades to the Fourche Creek WWTP are scheduled to occur 2004 with the bulk of the capacity improvements scheduled between 2014 and 2017. In order to relieve line surcharges along the Riverfront Basin and to help further relieve capacity constraints at the Adams WWTP, the Maumelle WWTP is schedule to start the engineering and permitting process for the new facilities in 2003 with installation completed by 2006. Table 5.3 presents the anticipated schedule for implementation of the treatment facilities.

Table 5.3
Schedule for Treatment Plant Improvements

Project Name	Begin Planning/Design	Complete Construction
Fourche WWTP (60 MGD)	$2004 / 2014$	$2005 / 2017$
Adams Field WWTP (94 MGD) (a)	2003	2005
Maumelle WWTP (b)	2003	2006

(a) Adams WWTP improvements include installation of 25 MG of equalization basins.
(b) MaumeIle WWTP improvements include installation of 30 MG of equalization basins.

The implementation schedule for capacity related improvements was developed during a series of program workshops with LRWU staff. Projects were prioritized based on response to critical conditions existing in the collection system, program flexibility, and coordination with development of the Utility's Wastewater Capital Improvements Plan (CIP). The CIP also includes continuing line rehabilitation work, facility operation and maintenance costs, and miscellaneous wastewater installations. Capacity improvements outlined in the SECAP Report are not intended to serve as a substitute for the Utility's comprehensive CIP. The complete schedule for capacity improvements for this SECAP are shown in Table 5.4. Note that the schedule has been divided into three 5 -year phases. This phasing was done to provide greater flexibility for assigning costs to interim milestone projects, assessment of schedule progress, and ongoing evaluation for planned improvements. Figure 5.1 provides a graphical representation of cash flow for improvements and Figure 5.2 shows the annual expenditures by type of construction.

5.3 IMPLEMENTATION RECOMMENDATIONS

The Utility should begin implementation of the capacity improvement program recommended in this System Evaluation and Capacity Assurance Plan, in accordance with the schedule shown above. The following items should be considered during project scheduling and design, and in future updates of the capacity plan.

- The alignments and sizes of all recommended projects should be verified with detailed predesign analyses, including topographic surveys, geotechnical investigations, utility research, and constructability reviews.
- Evaluation for paralleling or replacing existing sewers should consider the physical condition and remaining useful life of the existing pipelines; the availability of pipeline corridors for new sewer construction; and operation and maintenance concerns.
Table 5.4
System Evaluation and Capacity Assurance Plan
15-Year Implementation Schedule and Costs

Figure 5.1
Annual Expenditures for Capacity Assurance Plan Improvements

Figure 5.2
Anmual Expenditures by Type of Constraction

- The hydraulic model has been developed to assist the Utility in performing capacity analyses and updating their assurance plan in the future. The model should be kept up-to-date with any changes to existing sewer connections, sewer system facilities, or other collection system improvements.
- The Utility should continue to monitor flow at key locations in the sewer system, particularly in areas were comprehensive line rehabilitation is scheduled to occur. Flow levels during large storm events should be compared to the peak flows simulated by the hydraulic model to verify the modeling predictions for the design storm.
- After completion of line rehabilitation, flows should be re-monitored to verify that reductions in I/I have been achieved for local systems. The hydraulic model should be updated accordingly upon completion of that work and credit for downsizing or elimination of additional capacity related improvements should be documented.

This System Evaluation and Capacity Assurance Plan report is intended to be a working document to be refined and updated as additional data and new planning information becomes available. The Capacity Plan should be updated whenever changes are made to the sewer collection and treatment system.

Section 6

Infiltration / Inflow Abatement
This section provides discussion and recommendations for implementing a correction and maintenance program to address problems related to system infiltration and inflow (I/I). The discussion provided in this section is intended to assist the Utility with identifying sub-basin areas that contribute excessive I/I into the sewer system and provide recommendations for implementing a comprehensive plan that employs appropriate repair technologies, continued system flow monitoring, and modeling updates.

6.1 INFILTRATION/INFLOW REDUCTION PLAN

This section summarizes recommendations to The Utility with respect to infiltration/inflow (I/I) reduction and an ongoing sewer system renewal and replacement effort. The $1 / I$ abatement plan is an integrated approach that addresses I/I problems with an ongoing sewer replacement and repair effort. The plan links ongoing emergency repair and sewer renewal programs with a focused effort on removing extraneous I / I from the system. The plan includes provisions that are consistent with the emerging EPA SSO policy, including capacity, management, operations and maintenance (cMOM) requirements.

I/I reduction is system specific and rehabilitation is far less effective in removing I/I than most, including regulators expect. Factors such as pipe and manhole materials, system age, number of pipe joints, etc. impact the ability to remove $1 / I$. The approach to emergency, preventive, and corrective maintenance also impact the level of I / I reduction. Peak flows depend on a number of variables that interact in a complex way. In addition, the accuracy of monitoring peak flows is limited, which impacts our ability to effectively quantify I/I flows and reductions from rehabilitation.

The previous section (Section 5) of this report presents the recommended system capacity improvement plan for the LRWU wastewater collection system, based on the hydraulic capacity required to handle a design wet weather event. In identifying wastewater system alternatives, no credit was given for potential I/I reduction obtained through the proposed I/I abatement program outlined in this section. However, I / I abatement is recommended as a cornerstone of every sewer system improvement program. The CAG recommended that the Utility address I/I reduction as part of the overall system improvement program.

The flow targeted I/I reduction program would prioritize sewer rehabilitation and replacement based on the areas with the highest I / I contributions and the ability to impact the capacity improvement plan by reducing or proposed trunk sewer replacements. Targeted areas would be scheduled for comprehensive closed-circuit television (CCTV) inspection as warranted by the results of the hydraulic model and field observations. The program should also begin to address the complex issue of I / I abatement on sewer laterals located on private property. The proposed targeted I/I reduction and sewer rehabilitation/replacement plan should reduce I / I and peak wet weather flows (WWF) in the collection system. However, final credit for I/I reductions would not be taken until post rehabilitation flow monitoring confirms the volume reduction.

6.2 SOURCES OF INFILTRATION AND INFLOW

The flow monitoring and hydraulic analyses conducted for this SECAP Report indicated that the collection system experiences inflow and infiltration (I/I) of extraneous groundwater and storm water, into the sewer system. Inflow results in a rapid increased flow response to rainfall and includes storm water that enters the sanitary sewer system from:

- roof leaders,
- cellar drains,
- yard drains,
- area drains,
- drains from springs and swampy areas,
- manhole covers,
- cross connections between storm sewers and sanitary sewers.

Infiltration, on the other hand, is reflected by a slower, sustained response to rainfall and high groundwater conditions. Infiltration generally enters the sewer system through the ground via such means as defective pipes, pipe joints, connections, or manholes. The magnitude of I/I flows varies with the age, location and pipe material across the entire City. Some areas of the Little Rock system do have significant I/I as indicated by the flow monitoring data. The flow monitoring analysis produced the following system I/I characteristics:

- Delayed infiltration
- Increased infiltration during rainfall event
- Decreasing infiltration after rainfall event
- Rapid flow response is delayed following the initial rainfall
- Groundwater infiltration (GWI) increases during a succession of rainfall events
- Low rapid response flows indicating few direct connections
- Large wet-weather flow variation between flow meters

The above characteristics suggest that the I / I in the Little Rock system is predominantly steady, rainfall-induced infiltration as opposed to a rapid inflow response associated with direct connection to the City's storm water conveyance system

The Utility's ongoing sewer inspection program, which includes closed-circuit television (CCTV) has shown typical sewer defects such as offset joints, minor cracks, extensive corrosion, major structural failures, sags, etc. One specific area of concern is the extensive use of ABS truss pipe in the upper Rock Creek and Maumelle areas. There are numerous structural failures associated with the truss pipe in these areas resulting in high I / I potential.

6.3 CHALLENGE OF EFFECTIVE I/I ABATEMENT

Large expenditures for the correction of I / I sometimes produce only a small reduction in infiltration. The EPA recognized that the correction of excessive infiltration is likely to be unsuccessful in many circumstances.

While the technology and procedures associated with measuring and removing I/I continue to improve, the success of specific I/I removal projects depends on an extremely complex set of variables. This indicates that I / I removal is only one component of a collection system management program and that such a program needs to accommodate the variability in the success of I/I removal. Experience with I/I work has highlighted the need to address the following concerns during I / I removal efforts:

- The success of I/I removal efforts can be significantly limited if these efforts do not address private laterals. Many municipalities have hesitated to address private laterals due to legal, institutional, and technical problems.
- Peak flows must be correctly characterized. Infiltration may be incorrectly identified as inflow when RDI/I (Rainfall Derived Infiltration and Inflow) enters the sewer system through defects and produces a peak flow response similar to that of inflow from direct inflow connections.
- A correlation between measured rainfall and RDV/I entering a particular system is very difficult to determine reliable quantities without many years of historical data.
- Groundwater migration affects the effectiveness of I/I removal. Correction of a specific infiltration source may not result in corresponding reduction in the infiltration rate where groundwater migration occurs. Traditional approaches to identifying the cost effectiveness of sewer system rehabilitation that evaluate each inflow source or sewer defect on an individual basis may overestimate the amount of flow reduction by failing to account for the migration of water into pipe defects that remain unrepaired. Hence, groundwater that was precluded from entering main pipes prior to I / I removal efforts can enter the system after major sources of I/I have been repaired.
- The relationship between monitored flows and I/I from source defects may overestimate I/I removal. Metering programs may not have accounted for peak flows that bypass the treatment facility or that overflow from the system itself.
- Capital relief and replacement projects will lower surcharged conditions in numerous pipeline segments. Meeting this sewer system program objective may allow for additional I / I to enter the system. Accurately projecting and modeling this effect is difficult

The above challenges do not preclude the need to take pro-active steps to reduce excessive I / I and prevent I / I levels from increasing due to further deterioration of the collection system. However, they do offer a realistic assessment of the difficulties in dealing with a complex sewer system. They also support the approach that limits credit for I/I reduction in the planning process until actual I / I volume and peak flow reductions can be confirmed by actual observed decreases in peak wet weather flows.

6.4 FLOW TARGETED I/I REDUCTION

Sustained reduction in infiltration and inflow is a difficult challenge in any wastewater collection system. This is especially true in older systems or in systems where the material used and installation procedures resulted in multiple failure points throughout the area. As part of the integrated I / I reduction and sewer rehabilitation program, a flow targeted effort will:

- Identify parts of the system with high I / I volumes,
- Prioritize areas that will have a tangible impact on the size and location of capital infrastructure improvements,
- Employ comprehensive CCTV inspection and rehabilitation to effectively reduce I / I volumes,
- Confirm reductions in I/I by observed consistent decreases in wet weather flows.

An initial analysis of peak wet weather flow (PWWF) versus dry weather flow (DWF) for modeled line segments in the Little Rock system is shown in Figure 6.1.

Figure 6.1 PWWF to DWF Analysis

Figure 6.1 plots the PWWF to DWF ratio for the percentile of modeled lines segments. This "knee-of-the-curve" type analysis indicates that less than 12% of the modeled lines had a PWWF to DWF ratio above 8. Therefore, as an initial target, the rehabilitation program would focus I / I reduction on trunk segments and areas with PWWF to DWF ratios in excess of 8 .

Infiltration and inflow reduction would be an ongoing effort for LRWU. The near term, 5year I/I reduction plan would target those prioritized trunk segments or areas that would have a tangible impact, on the planned capital pipeline relief and replacement program. Figure 6.2 illustrates the areas in the collection system, which show the highest PWWF to average DWF. In general, those areas with high PWWF to average DWF that are upstream of those pipelines scheduled for replacement or relief over the next 15 years will be targeted. Figure 6.3 shows the relation between the Peak / Dry ratio and the proposed system trunk line upgrades. As part of the I / I abatement initiative, a more detailed analysis of trunk lines in the initial 5-year construction schedule would target those areas for comprehensive CCTV inspection and rehabilitation.

Flow targeted areas for I/I abatement must be checked against maintenance and repair histories and other factors to maximize the impact, of sewer rehabilitation on actual peak flow reduction. Targeted areas would require additional flow monitoring to isolate areas for inspection and rehabilitation. Pre-rehabilitation flow monitoring may also be helpful in establishing a baseline to gauge actual PWWF reduction.

Comprehensive cleaning and physical inspection using CCTV and other leak detection methods should be performed in the targeted areas. Comprehensive sewer replacement or rehabilitation should follow the results of he inspection efforts. Consideration should be given to the utilization of available unit-priced construction contracts and work order systems to perform most of the routine replacement and rehabilitation construction. This approach provides a direct link between inspection and repair in a "find and fix" mode, which provides rapid, cost effective rehabilitation, and may be helpful in monitoring the actual effects on I / I reduction. Larger mainline repairs and replacement in busy streets or those requiring more analysis and design can be accomplished in a more traditional capital sewer rehabilitation program.

Post-construction flow monitoring is essential to verify the actual reduction in I/I volume and the corresponding reduction in peak WWF. The results of post rehab flow monitoring coupled with re-modeling results can then be used to reevaluate the proposed pipeline replacement program. The proposed pipeline replacement program should be scheduled to accommodate the results of the I / I abatement effort and avoid replacing sewers that may be impacted by the I/I abatement effort.

6.5 EMERGENCY, CORRECTIVE, AND PREVENTIVE MAINTENANCE

Emergency and routine repairs and replacement of sewers can impact the success of the overall I/I abatement effort. Customer complaints, back-ups and overflows are indicators of sewer system maintenance, structural and capacity problems. The primary objectives of these ongoing maintenance programs are customer service and overall asset management. However, work order, customer complaint and overflow history can provide critical data in assessing I/I sources. The Utility field workers have the best hands-on knowledge of system condition and potential I/I sources. Coordination of emergency and corrective maintenance with I / I abatement can expand the mission of these ongoing maintenance programs to include I/I reduction.

The I/I abatement program would serve as a catalyst for information sharing, program assessment, and work order coordination to maximize the impact of ongoing repairs on I / I reduction.

Emergency Maintenance. Emergency maintenance is typically made in response to a customer complaint or critical system problem. Typically, emergency maintenance crews deal with blockages and structural failures. Deposition and blockages may occur from introducing improper materials into sewers, and from introduction of grease, grit, roots, or other debris. The potential for blockages can increase in sewers having flat slopes that reduce flow velocities or other structural defects.

A wide range of structural defects occurs in sanitary sewer collection systems. Examples include cracks or holes in pipes caused by corrosion or external forces and separated joints. A continuous maintenance effort, including an inspection program, should reduce the occurrence of overflows due to structural failures.

Corrective and Preventive Maintenance. The same approach holds true for ongoing corrective and preventative maintenance programs. A good preventive and corrective maintenance program is one of the best ways to keep a system in good repair, prevent service interruptions, avoid system failures, and reduce I / I. In addition to preventing overflows, backups, service interruptions, and system failures, a preventive and corrective maintenance program can protect the capital investment in the collection system. Preventive maintenance typically bases system management on historical information and how the system ages. Predictive management is an important feature of preventive maintenance and can be used for both long-range replacement and repairs and for establishing routine maintenance work orders for areas with known histories. Good record keeping and information management is the key for an effective predictive management program.

Components of a good preventive and corrective maintenance program would typically include:

- Routine inspection of the collection system, including pump stations
- Correction of faulty conditions that produce historical complaints
- Adequate workforce and appropriate equipment
- Maintain a schedule of planned activities
- Planned, systematic, and scheduled cleaning and repairs
- Proper sealing and/or maintenance of manholes
- Regular repair of deteriorating sewer lines
- Remediation of poor construction
- Regular inspection and maintenance of pump stations and other appurtenances

The inventory identified various types of sewer type materials in the LRWU collection system, as listed in Table 6.1. The table also indicates the projected service life of each material based on generally accepted values derived from manufacturers' estimates and experience in other communities. For the purpose of this study, service life is considered to be the age at which the deterioration and defect accumulation may begin to affect the
structural integrity of a pipe, or allow excessive infiltration to occur. The service life is useful for anticipating future renewal or replacement requirements.

Table 6.1
Estimated Sewer Pipe Service Life

Pipe Material	Lower Service Life (years)	Upper Service Life (years)	Comments/Potential Problems
Reinforced Concrete Pipe (RCP) (a)	25	50	Hydrogen sulfide corrosion
Unreinforced Concrete (CON)	25	50	Hydrogen sulfide corrosion
Asbestos Cement (ACP)	25	50	Hydrogen sulfide corrosion
Vitrified Clay with Gasket Joints (VCP)	75	100	Joint flexibility, bell and spigot cracking. Material brittleness- cracking and breakage
Vitrified Clay with Cement or Bituminous Joints (VCP)	50	75	Inflexible joint, bell and spigot cracking and breakage. Material brittleness-cracking and breakage
Polyvinyl Chloride (PVC)	50	75	Lacks long term life data
Acrylonitrile Butadiene Styrene (ABS)	50	75	Lacks long term life data
Polyethylene (PEP)	50	75	Lacks long term life data
ABS Truss Pipe	10	50	Material failures
Ductile Iron (DIP) and Steel (STL)	75	100	Corrosion

(a) Expected service life of PVC-lined RCP (T-lock) would be longer (50 to 100 years).

Inspection and Condition Assessment Prioritization. Specific needs for sewer renewal and replacement can be identified by CCTV inspection of the pipes and performing a condition assessment based on the CCTV data. Condition "ratings" based on CCTV data can be developed and used to prioritize renewal and replacement efforts. A key component of developing a renewal/replacement plan is a systematic program for cyclic CCTV inspection of the sewers. Performing CCTV inspection on a regular cycle is important for tracking changes in condition over time

One method of grouping or prioritizing sewers for CCTV inspection is by age and relative risk of failure. While age is a good guideline for prioritizing inspection other considerations, such as potential susceptibility to corrosion or location in a critical area (e.g., crossing a creek or highway), may dictate higher priority for certain segments. A plan should be proposed that utilizes a schedule for inspection and condition assessment based on two factors: corrosion resistance of the pipe material and age. The I/I abatement program should utilize comprehensive CCTV inspection to identify rehabilitation needs in the targeted flow reduction areas.

6.6 PRIVATE PROPERTY PROGRAMS

Private sewer connections represent 50% or more total sewer length of the collection system. Many storm water cross connection like foundation drains, area drains, downspouts are associated with these private sewers including connections that are intentionally made to provide site drainage. A number of studies have shown that the overall effectiveness of I / I removal efforts will be limited in many municipal collection systems if private sources of I / I are not addressed. Typically the I/I contribution from private sewers can range form 40% to 60% of the total $I / /$ problem.

There are numerous legal, institutional, social, financial, and political issues associated with the inspection, rehabilitation and repair of private sewer laterals. The political will to force utility customers and citizens to spend large amounts of money in repair of their sewer, which seems to work perfectly fine, is typically lacking. Investment of public funds on private property presents another funding challenge. Equity and social impacts that result from the high replacement costs in the older and impoverished parts of the City also present a challenge.

There are successful private property programs around the country. Some of ideas from these programs should be adapted to Little Rock and tested in a private sewer prototype program. The results of these prototype efforts should be monitored and modeled to evaluate the true effectiveness with regards to I / I reduction.

6.7 POTENTIAL I/I REDUCTION METHODS

Potential methods to reduce I/I are based on the types of sources found in the system. Methods for addressing direct inflow sources, infiltration sources in sewer mains and manholes, and sources on private property are summarized below. The I/I abatement program will employ a comprehensive approach to system rehabilitation and replacement.

Direct Inflow Sources. Direct inflow sources such as roof and area drains and storm drain connections are a possibility throughout the system, and will be indicated by the high peak flow rate during rainfall events. Elimination of direct inflow connections requires disconnection of the source and re-direction of the drainage to an appropriate location. Manholes subject to ponding or located in drainage courses are also considered to be sources of direct inflow. Physical inspection of manholes can identify such conditions and correction is straightforward (replace cover, realign frame, raise manhole to grade, remove or relocate manhole in watercourse, etc.).

Infiltration Sources in Sewer Mains and Manholes. Infiltration sources are primarily defects in sewer pipes or manholes caused by defective materials or construction, general deterioration, or damage caused by physical conditions. Visual inspection (for manholes) and CCTV inspection (for sewers) can detect infiltration sources. Infiltration correction methods generally involve lining or replacement of entire pipe segments, manholes or spot repair of localized defects. The cost per unit amount of I / I removed is relatively high, since the defects individually contribute relatively small amounts of flow. Rehabilitation is cost
effective only if a significant volume of infiltration can be isolated to a small area. Isolation of areas of infiltration can be done by flow monitoring or other flow measurement techniques, which are most effective, where very localized problems are suspected.

I/I Sources on Private Property. These I/I sources are mainly defective laterals, but may also include broken cleanouts or cleanout caps, or directly connected roof and area drains. Smoke testing is the primary method of detection. Correction of private property defects can be expensive due to the necessity of manual excavation of trenches and measures to protect and/or restore improvements such as driveways and fences. One method that has been implemented by sewerage agencies is an ordinance requiring testing or inspection of the sewer lateral at the sale of the property. If the lateral fails the inspection, appropriate repairs must be made before the sale closes. Therefore, the repair cost can be added to the sale price or closing costs.

6.8 RECOMMENDATIONS

- An integrated I / I abatement program should be implemented as part of the overall sewer system improvement program. This program should link a flow targeted $1 / I$ reduction effort with ongoing maintenance and capital rehabilitation and replacement efforts.
- The flow targeted I/I reduction program should prioritize areas for comprehensive inspection and rehabilitation. Post rehabilitation flow monitoring and modeling should be used to verify I / I volume and peak-flow reductions.
- The I/I abatement program should initially focus on known problem areas such as the Upper Hinson area in the Rock Trunk system and Maumelle Basin in order to maximize the I / I reduction impact of this ongoing program.
- Capital pipeline repair and replacement projects should be adjusted during the preliminary design stage to accommodate the verified results of the I / I abatement effort.
- The overall I/I abatement program should address the requirements of emerging EPA SSO policies including the cMOM initiative.

Section 7
 Citizen Participation

This section presents recommendations developed by the Little Rock Citizens Advisory Group. Members of the Group were selected from a cross section of the Little Rock Community representing municipal and regulatory agencies, commercial and industry, and private citizens groups. The Group was organized to exchange information and discuss options for correcting Little Rock's wastewater system capacity deficiencies.

7.1 CITIZENS ADVISORY GROUP OVERVIEW

The Citizens Advisory Group (CAG) was formed to ensure that community values were reflected in the decisions and recommendations of the System Evaluation and Capacity Assurance Plan for Little Rock. The roles and objectives for the Group were to:

- Serve as a communication link between the community and the Little Rock Wastewater Utility
- Assist in educating the public about the issues, proposed solutions, and the decision making process
- Define and prioritize community-related issues regarding wastewater
- Articulate community values and opinions
- Review studies' results and help evaluate alternatives using previously agreed upon criteria
- Issue recommendations to the Wastewater Utility
- Become familiar with the issues and take identified issues back to their constituents
- Provide input on the cost-effectiveness of the program
- Identify potential public concerns regarding wastewater-related issues and solutions facing the City of Little Rock and the Utility
- Identify potential community impacts of the alternative improvement projects including noise, access limitations, and traffic disruption
- Assist the City by making specific recommendations for the prioritization of the System Evaluation and Capacity Assurance Plan (SECAP)

Members of the CAG were selected from the community to represent neighborhood groups, municipal and public works agencies, business and industry, environmental groups, and the Little Rock Sewer Committee. The Group met independently of the LRWU so that conventional engineering and administrative contributions by the LRWU would not bias the opinions of the CAG. The Group developed their own set of criteria and selection matrix to assist them with identifying important issues and resolutions to Little Rock's sewer system capacity problems. A notebook was developed for the CAG members to track progress for the Group's four meetings; a copy of this notebook is provided in Appendix D.

7.2 . REVIEW OF ALTERNATIVES

Four options for addressing system capacity deficiencies were evaluated and ranked by the Group. Each of the four options utilized varying capacity upgrade techniques including peak
wet weather storage, conveyance and treatment improvements. To effectively rank and ultimately select a capacity upgrade option, the CAG developed an evaluation matrix and criteria for defining each option's feasibility and impact to community. Section 4.3.3, Evaluation Matrix, discusses the criteria (Table 4.3) and evaluation matrix (Table 4.4) for ranking wastewater construction technologies. The four options evaluated included:

Option 1. This option includes the same project components for Alternative A1 as noted in Section 4.3, Alternative Improvement Projects. These components include the construction of the new Maumelle WWTP and the 72-inch parallel trunk line from Adams Field WWTP upstream to the west-end of the existing Twin 60s.

Option 2. This option eliminates the need for the proposed Maumelle WWTP by installing additional line and facility improvements through the Riverfront Basin with sufficient conveyance capacity to deliver all Maumelle Basin flow to the Adams Field WWTP.

Option 3. This option provides the same improvement components as Alternative B2. This option uses a large storage facility to collect wastewater surcharge from the system during a storm event. The large storage volume eliminates the need to install the 72 -inch parallel trunk line and capacity improvements to the Arch Street Pump Station and the Adams Field WWTP. This option includes the construction of the proposed Maumelle WWTP.

Option 4. This option is similar to Alternative C2. It provides reduced storage and partial installation of the 72 -inch parallel trunk line from Arch Pump Station upstream to the westend of the Twin 60s.

7.2 RECOMMENDATIONS

Estimated capital costs for each option along with the CAG ranking are shown in Table 7.1. The options presented to the CAG were conceptual in nature and used only to convey a general understanding of the basic components, available technologies, and overall strategy for solving capacity deficiencies. Similarly, capital improvement costs estimated for options presented at the CAG workshops were developed only for discussion purposes. These estimates were not intended to reflect the same budget definition required for the Utility's Capital Improvement Plan. Also, further alternative analysis and refinement of the hydraulic model continued beyond the scheduled CAG workshops. As additional capacity improvement projects were identified, the costs were better defined and revisions were made to each alternative appropriately. Because of this progressive refinement of alternatives, Table 4.1 and Table 7.1 may show similar project components with different overall costs. However, a cost-based review of the alternative analysis rankings compared to the CAG selected options, showed no change in ranking position.

The results of the CAG matrix evaluation clearly indicated that options involving storage facilities were not preferred. Instead of storage, the CAG favored options involving installing the 72 -inch parallel trunk line and increasing capacities for the Arch Street and Fourche facilities to eliminate system deficiencies in south Little Rock.
Table 7.1
Summary of Options Presented to the Citizens Advisory Group

Option	$1 \mathrm{xpe} \mathrm{of} \mathrm{~V} \text { ow }$	Description	$\begin{aligned} & \text { Componenteost } \\ & \text { Cosillions) } \end{aligned}$	Cost Ranking	Matrix Ranking
r1	$\text { Vine } \frac{1}{N a n}$	Utility Trunk Sewer Upgrades $72^{\prime \prime}$ Parallel to Twin 60" Trunks (45,772 L.F.) $36^{\prime \prime}$ Force Main from Arch L.S. to Fourche WWTP (42,000 L.F.) 42" Force Main from Cantrell L.S. to Gravity Line		3	
	Rumpstiations	Cantrell - 25MGD to 40 MGD Arch -35 MGD to 60 MGD (FM - 30 " @ 41,500 L.F.)	1		
	Preathinen	Little Maumelle 4 MGD WWTP (w/ 30 MG Storage) Adam WWTP Upgrades (94 MGD w/ 25 MG Storage) Fourche WWTP Upgrade (from 38 MGD to 60 MGD)			
	\cdots				
2	Find Mand	Utility Trunk Sewer Upgrades 72" Parallel to Twin 60" Trunks (45,772 L.F.) $30^{\prime \prime}$ Force Main form Little Maumelle L.S. to Gravity Line 60" Gravity Line for Little Maumelle FM to Cantrell L.S. Twin 36" Force Main from Cantrell L.S. to Gravity Line 72" Gravity Line from Cantrell FM to Adams WWTP 36" Force Main from Arch L.S. to Fourche WWTP (42,000 L.F.)		4	
	Tman Stations	Cantrell - 25MGD to 70 MGD (New Station) Arch - 35 MGD to 60 MGD (New Station) Little Maumelle to 16 MGD (New Station)	\square		
	Wheatinent	Adam WWTP Upgrades (94 MGD w/ 25 MG Storage) Fourche WWTP Upgrade (from 38 MGD to 45 MGD)			
		Total			

Table 7.1
Summary of Options Presented to the Citizens Advisory Group
(continued)

Option	Taper Wox	Description	Component Cost (Milionis)	Cost Ranking	Matix Ranking
3	Mine Monky	Utility Trunk Sewer Upgrades 42" Force Main from Cantrell L.S. to Grav Line		1	
	fimistatum	Cantrell - 25MGD to 40 MGD			
	storage Daculity	Little Maumelle 4 MGD WWTP (w/ 10 MG Storage)	818.93		
		65 MGD Storage Facility (w/ 65 MGD Pump Station, Yard piping, Chlorination/Dechlorination facilites, influent / return piping \& property)			
		T Total			
4	Wine Wous	Utility Trunk Sewer Upgrades 60" Parallel to Twin 60" Trunks		2	
	Pump Stations	Cantrell - 25 MGD to 40 MGD Arch - 35 MGD to 45 MGD (FM - 30" @ 41,500 L.F.)	1		
	Freatment Stozage 1eacility	Little Maumelle 4 MGD WWTP (w/ 10 MG Storage) Adam WWTP Upgrades (94 MGD w/ 25 MG Storage) Fourche WWTP Upgrade (from 38 MGD to 50 MGD)	18		
		35 MGD Storage Facility (w/ 35 MGD Pump Station, Yard piping, Chlorination/Dechlorination facilites, influent / return piping \& property)	\$800:6		
		Total			

The Group's evaluation of options related to system deficiencies in north Little Rock yielded a less definitive group opinion. Although the matrix slightly favored system improvements, to convey all wastewater from the Maumelle Basin to the Adams WWTP over the construction of the new Maumelle WWTP, the Group did express significant concerns regarding the additional costs and potential community impact that would be caused by construction of the associated conveyance capacity projects.

The CAG also applied the matrix evaluation to an option that compared immediate construction of trunk sewer improvements before performing a comprehensive program of line rehabilitation. The results showed that the Group favored prioritizing the comprehensive rehabilitation program. The Group made the following additional recommendations:

- The Utility should address the issue of correcting I / I contributed by private lines and service connections located on private property. A pilot program to study I/I reduction realized by repairing service connections was suggested.
- For basins and sewer sub-basins where extensive I/I have been monitored, the Utility should conduct a comprehensive line/manhole rehabilitation program rather than performing immediate trunk line replacement. This program would consist of ongoing rehabilitation and flow monitoring to identify I/I reductions that might otherwise minimize the number of required new trunk lines, or possibly decrease the diameter size of new trunk lines needing to be replaced.
- The Utility should continue to install new facilities to incorporate areas that are not presently served by the Little Rock Wastewater Utility.
- The City of Little Rock should consider smart growth initiatives to control new development in logical manner. The intent is to provide an opportunity for Public Utilities to keep pace with service needs for both existing and new development without creating a major impact to the City's ability to finance continuing improvements.
- The City should adopt a schedule for implementing the recommended capacity system improvements that would minimize impact on future user rate increases.
- The Citizens Advisory Group should continue to work with the Little Rock Sewer Committee, Wastewater Utility and City Council toward the final development and adoption of the Capacity Assurance and System Evaluation Plan and the implementation schedule for Little Rock's Wastewater Capital Improvement Plan.

Section 8 Other Options

This section discusses two additional options for increasing capacity in the overall Little Rock Wastewater System. The discussion below shows that each option is worthy of further consideration as a cost effective and community minded approach to solving system capacity deficiencies. To ensure that these options are viable, a collaborative effort between the Utility, Sewer Committee and City, Browning-Ferris, Inc. (BFI), and North Little Rock Wastewater Utility will be required. The full development of these alternatives extends beyond the parameters of this report. Therefore, additional studies will be required to determine the feasibility for each option, identify facility improvements, define capital costs, and schedule implementation. This section provides conceptual parameters for each option and discusses some of the potential benefits.

8.1 ADDITIONAL OPTIONS

8.1.1 Background for North Little Rock WWTP Option

The Maumelle Basin is projected to experience more population growth over the next 25 years than any other basin in Little Rock. To better understand the impact that population growth would have on the wastewater system; the LRWU commissioned an engineering study. The "Little Maumelle Sub-basin Sewerage Study" (Appendix G) predicted that the average daily flow (ADF) of the basin would increase by 45% in 10 years and would more than double in 25 years.

The Maumelle Basin is located in the northwest part of the city. Wastewater from the basin currently flows to the existing Maumelle Pump Station before being pumped to gravity lines running along the Riverfront Basin to the Cantrell Pump Station. The flow at the Cantrell Station is then pumped to gravity trunk lines that flow to the Adams WWTP. This conveyance system experiences surcharging at the Cantrell Station and in the gravity lines along the Riverfront Basin during storm events. Since this system configuration already surcharges, these current conditions would be further stressed by the anticipated population growth in the Maumelle Basin. Hence, Maumelle's impending growth necessitates some form of collection system capacity upgrade or a new treatment plant for the area. The following paragraphs discuss one option for the conveyance and treatment for wastewater flow from the Maumelle Basin.

8.1.2 Description of North Little Rock WWTP Option

This option differs from previous alternatives discussed in the report by eliminating the need for a new treatment plant in the Maumelle Basin and improvements for total conveyance of flow to the Adams WWTP. This option includes the installation of a new pump station having an ultimate build-out capacity of 16 MGD , replacing the existing Maumelle Pump Station. The replacement station would also require the installation of an additional parallel force main to meet ultimate capacity requirements. Under this option wastewater from Maumelle would be pumped through the existing station's 24 -inch force main, and the new parallel line, to Murray Lock and Dam. Crossing the Arkansas River, attached to a proposed pedestrian/bikeway bridge located just downstream of the dam, the force mains would
combine into a single larger diameter force main and continue onto the White Oak Bayou WWTP for treatment.

8.1.3 White Oak Bayou WWTP

The White Oak Bayou WWTP is owned and operated by the North Little Rock Wastewater Utility (NLRWU). The plant is a partial mix aerated facultative lagoon facility with a design capacity of 4.25 MGD and an average daily flow ranging from 2.25 to 2.5 MGD . At a minimum, in order to accommodate the Maumelle flows, the facility would need to expand its lagoon system and install additional aeration equipment. The chlorine contact chamber will require expansion as well. Since NLRWU does not own adjacent property where these potential capacity improvements would be constructed, additional land will have to be purchased. This expansion also requires increasing the NPDES permitting limits for additional discharge of treated effluent created by Maumelle. Should this option be selected for implementation by LWRU, its anticipated that the NLRWU will continue to operate and maintain the facility after improvements are made. Since additional study outside the scope of this report is required to identify and quantify needed capacity improvements to the WWTP construction costs estimates were not completed for this option. Figure 8.1 shows the general location for the facilities.

8.1.4 Additional Option Improvements

Jimerson Creek and I-430 Pump Stations. Maumelle's wastewater would be conveyed across the Arkansas River through a single force main passing directly adjacent to the Jimerson Creek and 1-430 Areas. Should the replacement pump station for Maumelle be feasible, and if capacity is available in the new larger force main crossing the Arkansas River, it may be practical to include flows from the new pump stations for Jimerson Creek (12 MGD) and I-430 (1 MGD), by connecting one or both discharges directly to the proposed force main crossing the Arkansas River.

8.1.5 Benefits of North Little Rock Option

The reduction of flow provided by diverting wastewater from Jimerson Creek, Maumelle and the I-430 areas would alleviate surcharge conditions along the Riverfront Basin and at the Cantrell Pump Station. Additionally, this option would provide the added treatment capacity to allow the Adams Field WWTP to handle flow from south Little Rock more effectively. In addition to solving many of the system's deficiencies and operational problems, this option would avoid installation of a new treatment plant in the Maumelle Basin. This option would thereby eliminate the community concerns about the proposed Maumelle WWTP expressed by the Citizens Advisory Group, as well as associated environmental issues.

8.2 STORAGE DETENTION FACILITY

8.2.1 Landfill Site Storage Option

The Utility and Citizens Advisory Group selected alternatives that incorporated storage facilities as the least desirable options. However, as site investigations were conducted for

the original storage alternatives it was discovered that existing landfill facilities are located in the same general vicinity where proposed lagoons might have been installed. The landfill site includes a large excavated borrow area with adequate volume to achieve the 79 MG of storage requirements outlined in Alternative B2. Additional property surrounding the borrow area is also available for purchase in order to install needed ancillary facilities such as an over-flow discharge structure and a return pump station. Due to the strategic location of the existing landfill facilities, near the west-end of the Twin 60 s , and the fact that the borrow area has already been excavated, this option showed additional merit for continued evaluation. It should be noted that although the borrow area has already been excavated, the installation of containment berms to enclose the storage basin and basin lining will be required.

8.2.2 Storage Facility Operation

The storage site is located between the north and south Twin 60 interceptors, near Geyer Springs. As described in Alternative B2, a weir structure(s) would be installed over the Twin 60 -inch Interceptor(s) to divert surcharging wastewater from the system. Collected flows would then be conveyed to the storage facility through a series of gravity lines and pumped into the storage area. Collected wastewater would remain in storage until the wet weather surge pasted through Little Rock's collection system. Wastewater would then be returned to the main system either by gravity lines or pumping, as needed. Figure 8.1 shows the general location of the facilities.

8.2.3 Benefits of Landfill Storage Option

This option represents considerable capital cost savings to the Utility's capacity plan. Most of the excavation required for installing storage facilities at the landfill site has already been completed. Less excavation translates into further reduction of the $\$ 50.6$ million in capital costs estimated for installation of the 79 MG storage facilities identified for Alternative B2. Implementation of Alternative B2 would also provide an additional $\$ 19.7$ million savings over Alternative A1. Furthermore, since proposed storage facilities would be located at an existing landfill site community and environmental concerns (location and aesthetics) may at least be partially alleviated.

8.2 RECOMMENDATIONS FOR OPTIONS

In order to determine the feasibility for the White Oak Bayou WWTP and storage options, the Utility would need to conduct additional studies that should involve citizen group participation. For the White Oak Bayou WWTP Option, the recommended studies include:

- Detailed flow analysis for existing, interim and ultimate build-out flow conditions for the Jimerson Creek, I-430 and Maumelle areas.
letailed analysis for proposed treatment facility improvements required for projected w conditions. This analysis should include an investigation of available land for hase to expand plant capacity and an evaluation for revising the NPDES discharge †.
- Detailed capital cost estimates for all improvements at the plant, as well as the new Maumelle Pump Station, parallel force main and larger diameter force main to the plant.
- Study to confirm that flows from the proposed Jimerson Creek and I-430 Pump Stations can be included with this option. This should include detailed capital costs of associated improvements.

For the Storage Option, the additional studies should include:

- Soil investigations including permeability evaluations for the storage area and an environmental assessment of the site in general.
- Alignment studies for the delivery line(s) conveying flow from the Twin 60 Interceptors into the storage facility.
- Evaluation of potential and existing permitting issues that, at a minimum, should include an investigation of requirements from the Arkansas Department of Environmental Quality, US Army Corp of Engineers, and the landfill operator.

ESTIMATED PIPELINE CONSTRUCTION COST -- ALLSOP

TRUNK SEWER SYSTEM PROJECT DESCRIPTION	
PROJECT ID: .. Allsop	
LOCATION:.. H	Hawthorne Rd, Van Buren St, Country Club Blvd, Spruce S
BRIEF PROJECT DESCRIPTION:....................... 7	$7800 \mathrm{ft}, 18$ inch pipe
ESTIMATED COST:..	\$ 1,551,600
ASSUMPTIONS:... (i)	(i) New diameter based on pipe replacement
	(ii) Pipeline costs based on gravity construction in congested urban installations
	(iii) Costs include manholes, surface restoration and incidental costs, assuming no rock excavation
	(iv) Costs are $2001 \$$ and include 25 percent for engineering and contingencies
ALTERNATIVES:.. n	none

LINK REFERENCE	$\begin{aligned} & \text { EXISTING } \\ & \text { DIAMETER } \\ & \text { (inches) } \end{aligned}$	NEW DIAMETER (inches)	LENGTH (feet)	U/S DEPTH (feet)	$\begin{aligned} & \text { D/S DEPTH } \\ & \text { (feet) } \\ & \hline \end{aligned}$	AVG. DEPTH (feet)		$\begin{aligned} & \text { IT COST } \\ & \text { (S/lf) } \end{aligned}$		OST
50096.1	10	18	28	9.16	9.06	9	\$	200.00	\$	5,600
5D095.1	10	18	158	9.06	14.92	12	\$	200.00	\$	31,600
5D094.1	10	18	264	14.92	12.97	14	\$	200.00	\$	52,800
5D093.1	10	18	358	12.97	7.79	10	\$	200.00	\$	71,600
5D092.1	10	18	346	7.79	4.23	6	\$	200.00	\$	69,200
6D031.1	8	18	292	4.23	2.4	3	\$	200.00	\$	58,400
6D028.1	8	18	138	2.48	3.27	3	\$	200.00	\$	27,600
6D026.1	8	18	175	3.3	4.08	4	\$	200.00	\$	35,000
6D032.1	8	18	174	4.08	9.08	7	\$	200.00	\$	34,800
6D035.1	8	18	189	9.05	4.58	7	\$	200.00	\$	37,800
6D036.1	8	18	235	4.62	5.48	5	\$	200.00	\$	47,000
6D040.1	8	18	197	5.55	6.54	6	\$	200.00	\$	39,400
6D048.1	8	18	25	7.04	6.25	7	\$	200.00	\$	5,000
6D050.1	8	18	273	6.41	9.27	8	\$	200.00	\$	54,600
6D064.1	8	18	355	9.35	2.81	6	\$	200.00	\$	71,000
6D065.1	8	18	84	3.04	6.5	5	\$	200.00	\$	16,800
6D094.1	8	18	81	6.85	4.09	5	\$	200.00	\$	16,200
6D095.1	8	18	153	4.33	7.01	6	\$	200.00	\$	30,600
6D073.1	8	18	134	7.01	2.94	5	\$	200.00	\$	26,800
6D092.1	8	18	105	2.94	3.41	3	\$	200.00	\$	21,000
6E156.1	12	18	211	3.41 4.85	4.85	4	\$	200.00	\$	42,200
6E155.1	12	18	55	4.11	4.11 3.98	4	\$	200.00 200.00	\$	19,400
6E144.1	12	18	193	4.09	4.27	4	\$	200.00	\$	38,600
6E143.1	10	18	344	4.27	4.13	4	\$	200.00	\$	68,800
7E055.1	8	18	62	4.13	5.97	5	\$	200.00	\$	12,400
7E121.1	8	18	45	5.97	3.12	5	\$	200.00	\$	9,000
7E057.1	8	18	195	3.34	4.14	4	\$	200.00	\$	39,000
7E058.1	8	18	179	4.32	3.25	4	\$	200.00	\$	35,800
7E059.1	8	18	73	3.28	6.99	5	\$	200.00	\$	14,600
7E120.1	8	18	30	6.99	2.9	5	\$	200.00	\$	6,000
7E060.1	8	18	142	3.04	4.67	4	\$	200.00	\$	28,400
7E061.1	8	18	237	4.91	7.31	6	\$	200.00	\$	47,400
7E062.1	8	18	119	7.35	3.7	6	\$	200.00	\$	23,800
7E063.1	9	18	64	3.7	5.972	5	\$	200.00	\$	12,800
7 0 030.1	9 12	18	106	5.972	5.03	6	\$	200.00	\$	21,200
$7 \mathrm{7023.1}$	12	18	97 133	5.03	7.4	6	\$	200.00	\$	19,400
7D028.1	12 10	18	133 152	7.44	6.38	7	\$	200.00	\$	26,600
7D022.1	10	18	154	6.5 5.12	5.03 4.98	6	\$	200.00	\$	30,400
$7 \mathrm{D021.1}$	10	18	330	5.23	3.58	4	\$	200.00	\$	66,000
7 D 020.1	10	18	339	3.65	3.89	4	\$	200.00	\$	67,800
7 O 019.1	12	18	168	3.89	6.017	5	\$	200.00	\$	33,600
7 D 029.1	12	18	282	6.017	3.58	5	\$	200.00	\$	56,400
7E001.1	12	18	187	3.58	4.29	4	\$	200.00	\$	37,400

ESTIMATED PIPELINE CONSTRUCTION COST -- BARROW ADDITION

TRUNK SEWER SYSTEM PROJECT DESCRIPTION	
PROJECT ID:.. Barrow Addition	
LOCATION:... W 35th St, W 36th St, Potter St, Waiker St, Gilman St BRIEF PROJECT DESCRIPTION: 5600 feet, $18-24$ inch pipe	
ESTIMATED COST:.. \$ 1,223,420	
ASSUMPTIONS	(i) New diameter based on pipe replacement
	(ii) Pipeline costs based on gravity construction in congested urban installations
	(iii) Costs include manholes, surface restoration and incidental costs, assuming no rock excavation
	(iv) Costs are 2001 \$ and include 25 percent for engineering and contingencies
ALTERNATIVES:... n	none

LINK REFERENCE	\qquad	NEW DIAMETER (inches)	LENGTH (feet)	U/S DEPTH (feet)	$\begin{gathered} \text { D/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	AVG. DEPTH (feet)		T COST (\$/f)		COST
1K120.1	12	18	327	10.85	5.79	8	\$	200.00	\$	65,400
2 K 006.1	12	18	331	10.52	8.96	10	\$	200.00	\$	66,200
2 K 007.1	12	18	320	12.03	5.55	9	\$	200.00	\$	64,000
2 K 042.1	12	18	333	9.28	7.29	8	\$	200.00	\$	66,600
1 K 138.1	12	18	337	8.8	8.66	9	\$	200.00	\$	67,400
2K021.1	12	18	313	8.66	7.37	8	\$	200.00	\$	62,600
$2 \mathrm{K028.1}$	12	18	180	7.37	8.35	8	\$	200.00	\$	36,000
2 K 029.1	12	18	130	8.35	17.55	13	\$	200.00	\$	26,000
2 K 030.1	12	18	334	17.55	7.21	12	\$	200.00	\$	66,800
2 K 057.1	12	18	327	8.48	10.79	10	\$	200.00	\$	65,400
2 K 058.1	12	18	177	10.79	8.85	10	\$	200.00	\$	35,400
2 K 080.1	12	18	329	8.85	8.27	9	\$	200.00	\$	65,800
$2 \mathrm{K078.1}$	12	18	156	8.27	4.51	6	\$	200.00	\$	31,200
2 K 077.1	12	18	335	4.51	15.72	10	\$	200.00	\$	67,000
2K076.1	12	18	292	15.72	10.63	13	\$	200.00	\$	58,400
2 K 075.1	18	24	156	10.63	8.08	9	\$	283.00	\$	44,148
2K145.1	18	24	220	8.08	6.08	7	\$	283.00	\$	62,260
2K144.1	18	24	346	6.08	4.03	5	\$	283.00	\$	97,918
2K143.1	18	24	387	4.03	5.3	5	\$	283.00	\$	109,521
2K142.1	18	24	231	5.3	4.86	5	\$	283.00	\$	65,373

ESTIMATED PIPELINE CONSTRUCTION COST -- BARTON

TRUNK SEWER SYSTEM PROJECT DESCRIPTION	
Barton	
LOCATION	W 17th St, W 15th St, W 14th St, Maple St
BRIEF PROJECT DESCRIPTION:.......................	. 10,600 feet, 15-21 inch pipe
ESTIMATED COST:..	. \$ 2,289,448
ASSUMPTIONS:... (i) New diameter based on pipe replacement	
	(ii) Pipeline costs based on gravity construction in congested urban installations
	(iii) Costs include manholes, surface restoration and incidental costs, assuming no rock excavation
	(iv) Costs are $2001 \$$ and include 25 percent for engineering and contingencies
ALTERNATIVES:...	none

LINK REFERENCE	EXISTING DIAMETER (inches)	NEW DIAMETER (inches)	LENGTH (feet)	$\begin{gathered} \text { U/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	$\begin{gathered} \text { D/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	AVG. DEPTH (feet)		$\begin{aligned} & \text { IIT COST } \\ & \text { (\$/If) } \end{aligned}$		COST
71007.1	10	15	320	11	4	8	\$	188.00	\$	60,160
71008.1	10	15	29	4	4	4	\$	188.00	\$	5,452
71009.1	10	15	149	4	10	7	\$	188.00	\$	28,012
71039.1	12	18	3	10	10	10	\$	200.00	\$	600
71035.1	12	18	342	10	11	11	\$	200.00	\$	68,400
71156.1	12	18	174	12	15	13	\$	200.00	\$	34,800
71041.1	12	18	315	15	10	12	\$	200.00	\$	63,000
71044.1	12	18	173	10	11	10	\$	200.00	\$	34,600
71045.1	12	18	160	11	9	10	\$	200.00	\$	32,000
71046.1	12	18	150	9	4	7	\$	200.00	\$	30,000
71047.1	12	21	176	4	6	5	\$	221.00	\$	38,896
71048.1	10	21	159	6	6	6	\$	221.00	\$	35,139
71050.1	10	21	323	6	7	6	\$	221.00	\$	71,383
81006.1	10	21	303	7	7	7	\$	221.00	\$	66,963
81170.1	10	21	263	7	4	5	\$	221.00	\$	58,123
81069.1	10	21	145	5	4	5	\$	221.00	\$	32,045
81066.1	10	21	256	5	5	5	\$	221.00	\$	56,576
81176.1	10	21	33	5	5	5	\$	221.00	\$	7,293
81062.1	10	21	360	5	5	5	\$	221.00	\$	79,560
81060.1	12	21	155	5	6	5	\$	221.00	\$	34,255
81059.1	12	21	154	6	5	5	\$	221.00	\$	34,034
81053.1	10	21	152	5	5	5	\$	221.00	\$	33,592
81080.1	12	21	13	5	4	4	\$	221.00	\$	2,873
81051.1	10	21	133	4	4	4	\$	221.00	\$	29,393
81050.1	10	21	13	5	6	6	\$	221.00	\$	2,873
81049.1	12	21	182	6	7	7	\$	221.00	\$	40,222
81048.1	12	21	196	7	7	7	\$	221.00	\$	43,316
81145.1	12	21	154	7	6	6	\$	221.00	\$	34,034
81047.1	12	21	104	6	7	7	\$	221.00	\$	22,984
81046.1	12	21	298	7	7	7	\$	221.00	\$	65,858
81045.1	12	21	32	7	7	7	\$	221.00	\$	7,072
81044.1	12	21	280	7	7	7	\$	221.00	\$	61,880
81043.1	12	21	386	7	9	8	\$	221.00	\$	85,306
91072.1	12	21	271	9	7	8	\$	221.00	\$	59,891
91071.1	12	21	277	7	9	8	\$	221.00	\$	61,217
91070.1	15	21	130	9	9	9	\$	221.00	\$	28,730
91065.1	15	21	92	9	8	8	\$	221.00	\$	20,332
91064.1	15	21	237	8	12	10	\$	221.00	\$	52,377
9.1070 .1	15	21	289	12	13	12	\$	221.00	\$	63,869
$9 \mathrm{J069.1}$	15	21	113	13	16	15	\$	221.00	\$	24,973
9 J 068.1	15	21	235	16	16	16	\$	221.00	\$	51,935
9.067 .1	15	21	426	16	8	12	\$	221.00	\$	94,146
9.066 .1	15	21	362	8	15	12	\$	221.00	\$	80,002
9.5065 .1	15	21	404	15	17	16	\$	221.00	\$	89,284
9.064 .1	15	21	432	17	9	13	\$	221.00	\$	95,472
9 J 058.1	15	21	297	9	18	13	\$	221.00	\$	65,637
9.057 .1	15	21	126	23	7	15	\$	221.00	\$	27,846
9 J 026.1	15	21	187	7	8	7	\$	221.00	\$	41,327

ESTIMATED PIPELINE CONSTRUCTION COST -- COLEMAN CREEK

LINK REFERENCE	$\begin{aligned} & \text { EXISTING } \\ & \text { DIAMETER } \\ & \text { (inches) } \end{aligned}$	NEW DIAMETER (inches)	LENGTH (feet)	$\begin{aligned} & \text { U/S DEPTH } \\ & \text { (feet) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { D/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	AVG. DEPTH (feet)	UNIT COST (\$/If)		COST	
5F\$59.1	12	18	301	9.4	7.32	8	\$	200.00	\$	60,200
5F158.1	12	18	155	7.41	7.37	7	\$	200.00	\$	31,000
5F162.1	12	18	33	7.43	7.45	7	\$	200.00	\$	6,600
5F116.1	10	18	132	7.56	6.71	7	\$	200.00	\$	26,400
5F115.1	10	18	195	7.05	6.92	7	\$	200.00	\$	39,000
5F114.1	10	18	175	7.23	13.44	10	\$	200.00	\$	35,000
5F113.1	16	21	174	13.44	5.1	9	\$	221.00	\$	38,454
5F145.1	16	21	166	5.1	6.61	6	\$	221.00	\$	36,686
5F112.1	16	21	168	7.01	5.87	6	\$	221.00	\$	37,128
5F111.1	16	21	186	5.97	5.39	6	\$	221.00	\$	41,106
5F110.1	16	21	111	5.39	7.22	6	\$	221.00	\$	24,531
5F152.1	16	21	39	8.6	9.98	9	\$	221.00	\$	8,619
6G088.1	10	15	74	5.18	5.92	6	\$	188.00	\$	13,912
6G124.1	10	15	175	6.38	6.84	7	\$	188.00	\$	32,900
6G123.1	10	15	183	6.9	9	8	\$	188.00	\$	34,404
6G122.1	10	15	199	9.08	6.19	8	\$	188.00	\$	37,412
6G121.1	10	15	178	6.33	5.84	6	\$	188.00	\$	33,464
6G120.1	8	15	129	6.2	4.57	5	\$	188.00	\$	24,252
6G073.1	8	15	131	7.55	5.24	6	\$	188.00	\$	24,628
6G072.1	8	15	331	5.23	3.8	5	\$	188.00	\$	62,228
6G011.1	8	15	197	3.8	3.39	4	\$	188.00	\$	37,036
4H047.1	10	15	91	8.95	11.04	10	\$	188.00	\$	17,108
4H041.1	10	15	10	11.04	10.39	11	\$	188.00	\$	1,880
4H040.1	12	18	224	10.39	15.45	13	\$	200.00	\$	44,800
4H039.1	12	18	291	15.45	10.3	13	\$	200.00	\$	58,200
4H038.1	10	18	129	10.4	13.28	12	\$	200.00	\$	25,800
4H037.1	16	18	299	13.28	19.6	16	\$	200.00	\$	59,800
4H062.1	12	18	22	19.6	19.716	20	\$	200.00	\$	4,400
4H061.t	12	18	84	19.716	18.16	19	\$	200.00	\$	16,800
4H060.1	12	18	144	18.26	13.58	16	\$	200.00	\$	28,800
4H059. 1	12	18	94	13.68	7.398	11	\$	200.00	\$	18,800
4H149.1	12	18	14	7.398	5.93	7	\$	200.00	\$	2,800
4H058.1	12	18	136	6	16.75	11	\$	200.00	\$	27,200
4H057.1	12	18	58	17.1	13.6	15	\$	200.00	\$	11,600
4H056.1	16	18	210	14.05	7.7	11	\$	200.00	\$	42,000
4H055.1	16	18	56	7.85	10.3	9	\$	200.00	\$	11,200
4H054.1	12	18	84	10.4	9.78	10	\$	200.00	\$	16,800
4H053.1	12	18	130	9.9	7.98	9	\$	200.00	\$	26,000
4H052.1	12	18	207	7.98	12.36	10	\$	200.00	\$	41,400
5H026.1	12	18	170	12.36	14.3	13	\$	200.00	\$	34,000
5 H 025.1	15	21	99	14.34	15	15	\$	221.00	\$	21,879
5H027.1	15	21	214	15.01	14.53	15	\$	221.00	\$	47,294
5H028.1	15	21	129	14.52	14.02	14	\$	221.00	\$	28,509
5H087.1	15	21	400	14.12	11.83	13	\$	221.00	\$	88,400
4K114.1	10	15	158	2.6	8.39	5	\$	188.00	\$	29,704

LINK REFERENCE	EXISTING DIAMETER (inches)	NEW DIAMETER (inches)	$\begin{gathered} \text { LENGTH } \\ \text { (feet) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { U/S DEPTH } \\ & \text { (feet) } \end{aligned}$	$\begin{gathered} \text { D/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	AVG. DEPTH (feet)		T COST (\$/1f)		COST
4K116.1	10	15	116	8.39	11.05	10	\$	188.00	\$	21,808
4K010.1	10	15	286	11.05	12.7	12	\$	188.00	\$	53,768
4K009.1	10	15	297	12.7	20.84	17	\$	188.00	\$	55,836
4K008.1	12	15	227	20.84	19.87	20	\$	188.00	\$	42,676
$4 \mathrm{K007.1}$	10	15	208	19.87	13	16	\$	188.00	\$	39,104
4K006.1	10	15	347	13	10.94	12	\$	188.00	\$	65,236
4K005.1	10	15	418	10.95	6.4	9	\$	188.00	\$	78,584
5K001.1	10	15	401	8.41	3.44	6	\$	188.00	\$	75,388
$5 \mathrm{K002.1}$	10	15	389	3.45	3.66	4	\$	188.00	\$	73,132
5K003.1	12	15	319	3.69	14.75	9	\$	188.00	\$	59,972
5L025.1	15	21	156	7.32	7.72	8	\$	221.00	\$	34,476
5L026.1	15	21	339	7.72	5.56	7	\$	221.00	\$	74,919
5L027.1	15	21	401	5.56	7.31	6	\$	221.00	\$	88,621
5L028.1	15	21	7	7.31	7.32	7	\$	221.00	\$	1,547
5G160.1	18	36	189	7.88	6.88	7	\$	381.00	\$	72,009
5G045.1	18	36	63	6.95	6.93	7	\$	381.00	\$	24,003
5G142.1	18	36	158	7.05	5.75	6	\$	381.00	\$	60,198
5G046.1	18	36	184	5.83	6.62	6	\$	381.00	\$	70,104
5G048.1	18	36	125	6.68	6.359	7	\$	381.00	\$	47,625
5G067.1	18	36	150	6.359	6.78	7	\$	381.00	\$	57,150
5G049.1	18	36	192	6.78	7.23	7	\$	381.00	\$	73,152
5G130.1	18	36	87	7.23	6.95	7	\$	381.00	\$	33,147
5G051.1	18	36	102	7.05	9.57	8	\$	381.00	\$	38,862
5G099. \dagger	18	36	171	9.57	6.51	8	\$	381.00	\$	65,151
5G100.1	18	36	64	6.51	6.32	6	\$	381.00	\$	24,384
5G153.1	30	36	371	6.41	8.89	8	\$	381.00	\$	141,351
5G106.1	30	36	126	9.04	10.39	10	\$	381.00	\$	48,006
5G154.1	30	36	138	10.59	11.57	11	\$	381.00	\$	52,578
5G155.1	30	36	238	11.75	8.93	10	\$	381.00	\$	90,678
5G156.1	30 30	36 36	266	8.98	8.05	9	\$	381.00	\$	101,346
5G158.1	30	36 36	145	8.37 9.32	9.01 8.24	9	\$	381.00 381.00	\$	55,245
5H104.1	30	36	82	8.48	8.87	9	\$	381.00 381.00	\$	82,296
5H086.1	24	36	204	9.08	7.4	8	\$	381.00	\$	77,724
5H004.1	24	36	400	7.39	7.92	8	\$	381.00	\$	152,400
5H008.1	24	36	507	8.08	11.06	10	\$	381.00	\$	193,167
5 HOt 0.1	24	36	101	10.88	9.7	10	\$	381.00	\$	38,481
5H011.1	24	36	401	9.85	10.75	10	\$	381.00	\$	152,781
5H012.1	21	36	170	11.18	15.28	13	\$	381.00	\$	64,770
5H014.1	21	36	94	15.28	16.944	16	\$	381.00	\$	35,814
5H015.1	21	36	103	16.944	17.698	17	\$	381.00	\$	39,243
5H016.1	21	36	125	17.698	11.83	15	\$	381.00	\$	47,625
5 H 018.1	21	36	171	11.93	10.495	11	\$	381.00	\$	65,151
5H019.1	21	36	223	10.495	9.61	10	\$	381.00	\$	84,963
5 H 020.1	21	36	247	9.61	12.32	11	\$	381.00	\$	94,107
5H088.1	21	36	62	12.36	8.63	10	\$	381.00	\$	23,622
51035.1	21	36	57	8.97	7.07	8	\$	381.00	\$	21,717
51033.1	21	36	101	7.04	7.97	8	\$	381.00	\$	38,481
51032.1	21	36	83	8.05	7.19	8	\$	381.00	\$	31,623
51031.1 51030.1	21	36	246	7.32	7.857	8	\$	381.00	\$	93,726
51030.1 51029.1	21	36	338	7.857	8.71	8	\$	381.00	\$	128,778
51027.1	21	36	146	8.73	8.23	8	\$	381.00	\$	55,626
51026.1	21	36	246	9.11	9.11 8.06	9	\$	381.00	\$	75,057
51120.1	21	36	364	8.2	8.84	9	\$	381.00	\$	138,684
51024.1	21	36	87	8.84	9.658	9	\$	381.00	\$	33,147
51105.1	21	36	447	9.658	8.012	9	\$	381.00	\$	170,307
51132.1	21	36	121	8.012	7.46	8	\$	381.00	\$	46,101
51107.1	21	36	46	7.38	7.56	7	\$	381.00	\$	17,526
51104.1	21	36	279	7.56	6.78	7	\$	381.00	\$	106,299
51103.1	21	36	86	6.72	7.72	7	\$	381.00	\$	32,766
5 J 001.1	21	36	401	7.72	8.76	8	\$	381.00	\$	152,781
5J002.1	21	36	597	8.8	7.36	8	\$	381.00	\$	227,457
5.003.1	21	36	255	7.34	9.1	8	\$	381.00	\$	97,155
5 J075.1	24	36	213	9.14	6.61	8	\$	381.00	\$	81,153

| LINK
 REFERENCE | EXISTING
 DIAMETER
 (inches) | NEW DIAMETER
 (inches) | LENGTH
 (feet) | U/S DEPTH
 (feet) | D/S DEPTH
 (feet) | AVG. DEPTH
 (feet) | UNIT COST |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (\$/If) | | | | | | | |

ESTIMATED PIPELINE CONSTRUCTION COST -- COUNTRY CLUB

TRUNK SEWER SYSTEM PROJECT DESCRIPTION	
PROJECT ID: \qquad Country Club	
LOCATION	Cantrell Road, Rebsamen Park Rd
BRIEF PROJECT DESCRIPTION:	7500 feet, 30-54 inch pipe
ESTIMATED COST	\$ 3,205,850
ASSUMPTIONS:	(i) New diameter based on pipe replacement
	(ii) Pipeline costs based on gravity construction in congested urban installations
	(iii) Costs include manholes, surface restoration and incidental costs, assuming no rock excavation
	(iv) Costs are $2001 \$$ and include 25 percent for engineering and contingencies
ALTERNATIVES:...	none

LINK REFERENCE	EXISTING DIAMETER (inches)	NEW DIAMETER (inches)	LENGTH (feet)	U/S DEPTH (feet)	$\begin{gathered} \text { D/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	AVG. DEPTH (feet)		t cost (\$/If)		COST
8E049.1	24	30	337	8.44	8.14	8	\$	320.00	\$	107,840
8E063.1	24	30	495	8.14	11.54	10	\$	320.00	\$	158,400
8F017.1	24	30	327	11.54	9.9	11	\$	320.00	\$	104,640
8 F 019.1	24	30	73	9.9	13.48	12	\$	320.00	\$	23,360
8F020.1	24	30	368	13.48	14.56	14	\$	320.00	\$	117,760
8F021.1	24	36	111	14.56	14.16	14	\$	381.00	\$	42,291
8F022.1	24	36	117	14.16	14.4	14	\$	381.00	\$	44,577
BF105.1	24	36	20	14.4	14.85	15	\$	381.00	\$	7,620
8F104.1	24	36	530	14.85	14.262	15	\$	381.00	\$	201,930
8F098.1	24	36	539	14.262	13.873	14	\$	381.00	\$	205,359
9F034.1	24	36	21	13.873	23.15	19	\$	381.00	\$	8,001
9F061.1	24	36	129	23.15	14.21	19	\$	381.00	\$	49,149
9F033.1	24	36	246	14.21	12.645	13	\$	381.00	\$	93,726
9 F 032.1	24	36	95	12.645	13.01	13	\$	381.00	\$	36,195
9F031.1	24	36	198	13	13.6	13	\$	381.00	\$	75,438
9F030.1	24	36	143	14.04	7.42	11	\$	381.00	\$	54,483
9F029.1	24	36	381	7.98	6.865	7	\$	381.00	\$	145,161
9F028.1	27	36	376	6.865	19	13	\$	381.00	\$	143,256
9 F 026.1	27	36	427	18.999	24.001	22	\$	381.00	\$	162,687
9 F 025.1	27	36	66	24.05	21.78	23	\$	381.00	\$	25,146
9F058.1	27	36	66	21.78	22.5	22	\$	381.00	\$	25,146
9 F 024.1	27	36	90	22.5	23.49	23	\$	381.00	\$	34,290
9F059.1	27	36	213	23.49	13.82	19	\$	381.00	\$	81,153
9 F 023.1	27	36	20	13.82	32.58	23	\$	381.00	\$	7,620
9F022.1	42	54	300	34.51	37.39	36	\$	603.00	\$	180,900
9F053.1	42	54	670	37.42	37.98	38	\$	603.00	\$	404,010
10F005.1	42	54	596	38.03	36.4	37	\$	603.00	\$	359,388
10G070.1	42	54	131	36.45	34.09	35	\$	603.00	\$	78,993
10G069.1	42	54	377	34.12	41	38	\$	603.00	\$	227,331

ESTIMATED PIPELINE CONSTRUCTION COST -- DISTRICT 119

TRUNK SEWER SYSTEM PROJECT DESCRIPTION	
PROJECT ID:... District 119	
\qquad W 34th St, Mary St, Boulevard Ave, W 22nd SI BRIEF PROJECT DESCRIPTION: \qquad 5500 feet, 24 inch pipe	
ESTIMATED COST:....................................... \$ $1,568,103$	
ASSUMPTIONS:.. (i) New diameter based on pipe replacement	
	(ii) Pipeline costs based on gravity construction in congested urban installations
	(iii) Costs include manholes, surface restoration and incidental costs, assuming no rock excavation
	(iv) Costs are $2001 \$$ and include 25 percent for engineering and contingencies
ALTERNATIVES:...	

LINK REFERENCE	EXISTING DIAMETER (inches)	NEW DIAMETER (inches)	LENGTH (feet)	U/S DEPTH (feet)	$\begin{aligned} & \text { D/S DEPTH } \\ & \text { (feet) } \\ & \hline \end{aligned}$	AVG. DEPTH (feet)		$\begin{aligned} & \text { IT COST } \\ & \text { (S/If) } \end{aligned}$ (\$/1f)		COST
6 J 005.1	15	24	53	8.55	8.01	-8	\$	283.00	\$	14,999
6.1134 .1	15	24	105	8.13	7.75	8	\$	283.00	\$	29,715
6.1135 .1	15	24	66	8	8.47	8	\$	283.00	\$	18,678
6 J 011.1	15	24	153	8.56	9.77	9	\$	283.00	\$	43,299
6 J 166.1	15	24	4	9.77	9.73	10	\$	283.00	\$	1,132
6 J 012.1	15	24	73	9.73	9.388	10	\$	283.00	\$	20,659
6 J 016.1	15	24	59	9.388	9.056	9	\$	283.00	\$	16,697
65133.1	15	24	89	9.056	8.96	9	\$	283.00	\$	25,187
6.1018 .1	15	24	10	8.96	9.12	9	\$	283.00	\$	2,830
6.132 .1	15	24	324	9.22	6.08	8	\$	283.00	\$	91,692
6 J 028.1	15	24	207	6.11	4.15	5	\$	283.00	\$	58,581
6 J 031.1	15	24	42	4.3	5.78	5	\$	283.00	\$	11,886
6 J 032.1	15	24	50	5.8	5.06	5	\$	283.00	\$	14,150
6.033 .1	15	24	65	5.11	6.5	6	\$	283.00	\$	18,395
6 J 034.1	15	24	303	6.5	6.818	7	\$	283.00	\$	85,749
6.082 .1	15	24	236	6.818	6.56	7	\$	283.00	\$	66,788
6 J 081.1	15	24	307	6.56	5.8	6	\$	283.00	\$	86,881
6 J 080.1	15	24	357	7.36	4.66	6	\$	283.00	\$	101,031
6 J 079.1	15	24	298	4.68	5.5	5	\$	283.00	\$	84,334
6K009.1	15	24	161	5.46	4.74	5	\$	283.00	\$	45,563
6K010.1	15	24	155	4.9	8.58	7	\$	283.00	\$	43,865
6K119.1	15	24	176	8.62	16.93	13	\$	283.00	\$	49,808
6K011.1	15	24	295	17.06	11.42	14	\$	283.00	\$	83,485
6K014.1	15	24	147	11.44	4.94	8	\$	283.00	\$	41,601
6K015.1	15	24	71	4.95	4.4	5	\$	283.00	\$	20,093
6K016.1	15	24	57	4.42	6.05	5	\$	283.00	\$	16,131
6K017.1	15	24	170	6.05	4.79	5	\$	283.00	\$	48,110
6K018.1	15	24	33	4.79	4.68	5	\$	283.00	\$	9,339
6K019.1	15	24	201	4.87	5.23	5	\$	283.00	\$	56,883
6K144.1	15	24	197	5.29	6.66	6	\$	283.00	\$	55,751
6K020.1	15	24	225	7.62	10.15	9	\$	283.00	\$	63,675
6K022.1	15	24	163	10.18	11.34	11	\$	283.00	\$	46,129
6K023.1	15	24	351	11.45	13.53	12	\$	283.00	\$	99,333
6K026.1	15	24	179	13.62	14.34	14	\$	283.00	\$	50,657
6K028.1	15	24	150	14.45	13.92	14	\$	283.00	\$	42,450
6K029.1	15	24	9	14.03	13.66	14	\$	283.00	\$	2,547

Total: \$ 1,568,103

ESTIMATED PIPELINE CONSTRUCTION COST -- GRANITE MOUNTAIN

TRUNK SEWER SYSTEM PROJECT DESCRIPTION	
PROJECT ID: .. Granite Mountain	
LOCATION:.. Springer Blvd	
BRIEF PROJECT DESCRIPTION:....................... 2900 feet, 18 inch pipe	
ESTIMATED COST:.	\$ 571,800
ASSUMPTIONS:.. (i) New diameter based on pipe replacement	
	(ii) Pipeline costs based on gravity construction in congested urban installations
	(iii) Costs include manholes, surface restoration and incidental costs, assuming no rock excavation
	(iv) Costs are 2001 \$ and include 25 percent for engineering and contingencies
ALTERNATIVES:..	none

| LINK
 REFERENCE | EXISTING
 DIAMETER
 (inches) | NEW DIAMETER
 (inches) | LENGTH
 (feet) | U/S DEPTH
 (feet) | D/S DEPTH
 (feet) | AVG. DEPTH
 (feet) | UNIT COST |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | (\$/If) | | | | | | |

ESTIMATED PIPELINE CONSTRUCTION COST -- District 19

LINK REFERENCE	EXISTING DIAMETER (inches)	NEW DIAMETER (inches)	LENGTH (feet)	$\begin{gathered} \text { U/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	$\begin{gathered} \text { D/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	AVG. DEPTH (feet)	UNIT COST (\$/If)		COST	
151018.1	10	15	323	6.71	5.52	6	\$	188.00	\$	60,724
151016.1	10	15	326	5.55	5.53	6	\$	188.00	\$	61,288
151003.1	10	15	259	5.84	6.05	6	\$	188.00	\$	48,692
15J038.1	10	15	295	6.32	6.2	6	\$	188.00	\$	55,460
15J024.1	10	15	146	6.27	5.79	6	\$	188.00	\$	27,448
15J022.1	10	15	160	5.91	5.23	6	\$	188.00	\$	30,080
15J021.1	10	15	47	5.45	6.79	6	\$	188.00	\$	8,836
15J011.1	10	15	252	6.82	5.72	6	\$	188.00	\$	47,376
15 J 010.1	10	15	346	5.9	8.39	7	\$	188.00	\$	65,048
15J009.1	10	15	159	8.39	8.16	8	\$	188.00	\$	29,892
15J008.1	10	15	333	8.16	10.87	10	\$	188.00	\$	62,604
15J004.1	10	15	39	10.87	7.33	9	\$	188.00	\$	7,332
15J003.1	10	15	315	7.41	8.01	8	\$	188.00	\$	59,220
15J002.1	10	15	304	8.04	12.29	10	\$	188.00	\$	57,152
15J001.1	10	15	163	12.38	15.6	14	\$	188.00	\$	30,644
15J057.1	10	15	24	15.66	15.8	16	\$	188.00	\$	4,512
15K034.1	10	15	69	15.8	14.53	15	\$	188.00	\$	12,972
15K022.1	10	15	213	14.53	12.95	14	\$	188.00	\$	40,044
15 K 021.1	12	15	50	13.03	10.36	12	\$	188.00	\$	9,400
15K020.1	12	15	433	10.36	10.44	10	\$	188.00	\$	81,404
15K019.1	12	15	295	10.44	24.82	18	\$	188.00	\$	55,460
15 K 018.1	12	15	36	24.82	24.84	25	\$	188.00	\$	6,768
15K017.1	12	15	417	24.84	22.09	23	\$	188.00	\$	78,396
15K013.1	12	15	434	22.09	20.35	21	\$	188.00	\$	81,592
15 J 045.1	10	15	92	8.18	8.42	8	\$	188.00	\$	17,296
16J014.1	10	15	229	8.42	9.35	9	\$	188.00	\$	43,052
16J013.1	10	15	320	9.35	10.25	10	\$	188.00	\$	60,160
16J010.1	10	15	317	10.25	10.89	11	\$	188.00	\$	59,596
16K015.1	10	15	317	10.89	13.12	12	\$	188.00	\$	59,596
16K014.1	10	15	135	13.12	12.49	13	\$	188.00	\$	25,380
16K018.1	10	15	182	12.49	12.38	12	\$	188.00	\$	34,216
16K013.1	10	15	135	12.38	15.14	14	\$	188.00	\$	25,380
16K021.1	10	15	120	15.14	15.27	15	\$	188.00	\$	22,560
16K012.1	10	15	248	15.27	23.43	19	\$	188.00	\$	46,624

Total: \$ 1,416,204

ESTIMATED PIPELINE CONSTRUCTION COST -- JIMERSON CREEK

LINK REFERENCE	$\begin{aligned} & \text { EXISTING } \\ & \text { DIAMETER } \\ & \text { (inches) } \\ & \hline \end{aligned}$	NEW DIAMETER (inches)	LENGTH (feet)	$\begin{gathered} \text { U/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	$\begin{gathered} \text { D/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	AVG. DEPTH (feet)		T COST (\$/If)		COST
3D118.1	10	15	251	7.02	2.67	5	\$	188.00	\$	47,188
3D119.1	10	15	242	4.64	6.68	6	\$	188.00	\$	45,496
$3 \mathrm{D120.1}$	10	15	206	6.8	3.14	5	\$	188.00	\$	38,728
3D066.1	10	15	368	5.43	4.53	5	\$	188.00	\$	69,184
3 D065.1	10	15	185	5.48	6.9	6	\$	188.00	\$	34,780
3 D064.1	10	15	215	6.99	4.8	6	\$	188.00	\$	40,420
3D108.1	10	15	400	4.74	3.84	4	\$	188.00	\$	75,200
3 D 109.1	10	15	371	3.83	2.8	3	\$	188.00	\$	69,748
3D110.1	10	15	438	2.87	3.58	3	\$	188.00	\$	82,344
3D111.1	12	18	227	3.58	5.44	5	\$	200.00	\$	45,400
3 D 113.1	16	21	127	5.42	6.89	6	\$	221.00	\$	28,067
3D114.1	16	21	130	7.55	6.03	7	\$	221.00	\$	28,730
$3 \mathrm{C096.1}$	16	21	213	5.95	4.72	5	\$	221.00	\$	47,073
$3 \mathrm{C095.1}$	16	21	76	7.71	7.16	7	\$	221.00	\$	16,796
$3 \mathrm{C097.1}$	16	21	145	7.24	6.08	7	\$	221.00	\$	32,045
$3 \mathrm{C098.1}$	16	21	30	6.08	4.58	5	\$	221.00	\$	6,630
3C103.1	16	21	190	4.7	4.6	5	\$	221.00	\$	41,990
3 C 104.1	16	21	97	4.71	4.09	4	\$	221.00	\$	21,437
3C105.1	16	21	380	5.68	4.12	5	\$	221.00	\$	83,980
3 C 124.1	16	21	73	4.21	3.11	4	\$	221.00	\$	16,133
3 C 123.1	16	21	83	4.96	5.79	5	\$	221.00	\$	18,343
3C122.1	16	21	86	5.9	7.29	7	\$	221.00	\$	19,006
$3 \mathrm{C159.1}$	16	21	120	7.29	11.91	10	\$	221.00	\$	26,520
3C136.1	16	21	69	12.13	6.35	9	\$	221.00	\$	15,249
3C137.1	-16	21	82	12.51	6.92	10	\$	221.00	\$	18,122
3 C 138.1	16	21	93	7	5.93	6	\$	221.00	\$	20,553
$3 \mathrm{C139.1}$	18	24	371	6.37	7.28	7	\$	283.00	\$	104,993
2 C 113.1	18	24	255	7.41	4.51	6	\$	283.00	\$	72,165
2C112.1	18	24	104	4.55	4.63	5	\$	283.00	\$	29,432
2 C 111.1	18	24	236	4.74	4.63	5	\$	283.00	\$	66,788
2C110.1	18	24	119	4.66	5.26	5	\$	283.00	\$	33,677
$2 \mathrm{C114.1}$	18	24	184	5.26	4.63	5	\$	283.00	\$	52,072
2 C 115.1	18	24	222	4.91	5.09	5	\$	283.00	\$	62,826
$2 \mathrm{C120.1}$	18	24	192	5.23	6.26	6	\$	283.00	\$	54,336
2 C 121.1	18	24	206	6.28	5.14	6	\$	283.00	\$	58,298
2 C 127.1	18	24	328	5.86	5.38	6	\$	283.00	\$	92,824
2 C 128.1	18	24	89	5.57	5.17	5	\$	283.00	\$	25,187
2C129.1	18	24	314	6.12	5.8	6	\$	283.00	\$	88,862
2C006.1	18	24	312	5.78	4.68	5	\$	283.00	\$	88,296
2C005.1	18	24	391	4.73	4.78	5	\$	283.00	\$	110,653
2C001. 1	18	24	199	4.73	4.61	5	\$	283.00	\$	56,317
1B023.1	18	24	216	4.45	4.49	4	\$	283.00	\$	61,128
1B021.1	18	24	83	5.55	3.96	5	\$	283.00	\$	23,489
18020.1	18	24	104	3.95	6.17	5	\$	283.00	\$	29,432
$1 \mathrm{B078.1}$	18	24	95	6.17	4.68	5	\$	283.00	\$	26,885
18019.1	18	24	282	5.95	5.39	6	\$	283.00	\$	79,806
18018.1	18	24	193	5.5	5.81	6	\$	283.00	\$	54,619

\(\left.$$
\begin{array}{ccccccccc}\begin{array}{c}\text { LINK } \\
\text { REFERENCE }\end{array} & \begin{array}{c}\text { EXISTING } \\
\text { DIAMETER } \\
\text { (inches) }\end{array} & \begin{array}{c}\text { NEW DIAMETER } \\
\text { (inches) }\end{array} & \begin{array}{c}\text { LENGTH } \\
\text { (feet) }\end{array} & \begin{array}{c}\text { U/S DEPTH } \\
\text { (feet) }\end{array} & \begin{array}{c}\text { D/S DEPTH } \\
\text { (feet) }\end{array} & \begin{array}{c}\text { AVG. DEPTH } \\
\text { (feet) }\end{array}
$$ \& UNIT COST

(\$ / / \mathrm{lf})\end{array}\right]\)| COST |
| :---: |

ESTIMATED PIPELINE CONSTRUCTION COST -- MAUMELLE

TRUNK SEWER SYSTEM PROJECT DESCRIPTION	
LOCATION:... Near Hinson Rd, Jennifer Dr	
BRIEF PROJECT DESCRIPTION:......................24,500 feet, 15-36 inch pipe	
ESTIMATED COST:..................................... \$ 6,536,535	
ASSUMPTIONS:.. (i) New diameter based on pipe replacement	
	(ii) Pipeline costs based on gravity construction in congested urban installations
	(iii) Costs include manholes, surface restoration and incidental costs, assuming no rock excavation
	(iv) Costs are $2001 \$$ and include 25 percent for engineering and contingencies
ALTERNAT	Significant infiltration and inflow reduction in Upper Hinson aree

LINK REFERENCE	$\begin{aligned} & \text { EXISTING } \\ & \text { DIAMETER } \\ & \text { (inches) } \end{aligned}$	NEW DIAMETER (inches)	LENGTH (feet)	U/S DEPTH (feet)	$\begin{aligned} & \text { D/S DEPTH } \\ & \text { (feet) } \\ & \hline \end{aligned}$	AVG. DEPTH (feet)	$\begin{aligned} & \text { UNIT COST } \\ & \text { (\$/If) } \end{aligned}$		COST	
-4E002.1	10	15	259	6.171	6.949	7	\$	188.00	\$	48,692
-5C136.1	10	15	269	4.97	4.071	5	\$	188.00	\$	50,572
-5C068.1	10	15	361	5.07	8.068	7	\$	188.00	\$	67,868
-5C069.1	10	15	253	8.068	8.771	8	\$	188.00	\$	47,564
-5C130.1	10	15	108	8.771	5.659	7	\$	188.00	\$	20,304
-5C074.1	10	15	404	5.659	6.25	6	\$	188.00	\$	75,952
-5C075.1	10	15	161	6.25	5.409	6	\$	188.00	\$	30,268
-5C076.1	12	15	194	5.409	5.058	5	\$	188.00	\$	36,472
-4E035.1	10	15	308	7.259	8.35	8	\$	188.00	\$	57,904
-4E037.1	10	15	440	8.35	6.949	8	\$	188.00	\$	82,720
-4E001.1	10	15	200	7.061	8.34	8	\$	188.00	\$	37,600
-5D021.1	10	15	123	8.442	7.65	8	\$	188.00	\$	23,124
-5D018.1	10	15	163	7.65	7.251	7	\$	188.00	\$	30,644
-5D017.1	10	15	39	7.251	7.809	8	\$	188.00	\$	7,332
-5D079.1	10	15	59	7.871	9.14	9	\$	188.00	\$	11,092
-5D016.1	10	15	224	9.14	6.41	8	\$	188.00	\$	42,112
-5D117.1	10	15	105	6.41	5.139	6	\$	188.00	\$	19,740
-5D015.1	10	15	56	7.18	9.38	8	\$	188.00	\$	10,528
-5D115.1	10	15	164	9.38	8.791	9	\$	188.00	\$	30,832
$-5 D 014.1$	10	15	203	8.791	11.131	10	\$	188.00	\$	38,164
-5D013.1	10	18	56	11.131	7.97	10	\$	200.00	\$	11,200
-5D061.1	10	18	243	7.97	7.66	8	\$	200.00	\$	48,600
-5D012.1	10	18	151	7.709	9.068	8	\$	200.00	\$	30,200
-5D085.1	10	18	194	9.068	- 12.8	11	\$	200.00	\$	38,800
-5D011.1	10	18	174	12.98	6.458	10	\$	200.00	\$	34,800
$-5 D 010.1$	10	18	128	6.458	7.768	7	\$	200.00	\$	25,600
$-5 D 009.1$	10	18	220	7.768	6.928	7	\$	200.00	\$	44,000
-5D008.1	10	18	404	7.909	6.469	7	\$	200.00	\$	80,800
-5D007.1	10	18	269	6.538	4.579	6	\$	200.00	\$	53,800
-5D006.1	10	18	249	4.668	6.49	6	\$	200.00	\$	49,800
$-5 D 005.1$	10	18	210	6.588	9.339	8	\$	200.00	\$	42,000
-5D004.1	10	18	423	9.608	4.458	7	\$	200.00	\$	84,600
-5C096.1	12	18	279	5.058	4.407	5	\$	200.00	\$	55,800
-5C095.1	12	18	72	4.407	7.096	6	\$	200.00	\$	14,400
-5C094.1	12	18	390	7.149	8.637	8	\$	200.00	\$	78,000
-5C093.1	12	18	92	8.657	3.028	6	\$	200.00	\$	18,400
-5C092.1	12	18	200	3.068	7.076	5	\$	200.00	\$	40,000
$-5 \mathrm{C} 109.1$	12	18	112	7.076	5.667	6	\$	200.00	\$	22,400
$-5 C 110.1$	12	18	75	5.907	5.417	6	\$	200.00	\$	15,000
-5C111.1	12	18	174	5.417	6.217	6	\$	200.00	\$	34,800
-5C113.1	12	18	36	6.466	6.978	7	\$	200.00	\$	7,200
-5C114.1	12	18	207	6.978	8.247	8	\$	200.00	\$	41,400
-5C116.1	12	18	397	8.506	7.147	8	\$	200.00	\$	79,400
-5C030. 1	15	18	197	7.147	5.127	6	\$	200.00	\$	39,400
-5C029.1	15	18	256	5.127	8.996	7	\$	200.00	\$	51,200
-5C026.1	20	27	121	9.596	9.168	9	\$	302.00	\$	36,542

LINK REFERENCE	EXISTING DIAMETER (inches)	NEW DIAMETER (inches)	$\begin{gathered} \text { LENGTH } \\ \text { (feet) } \\ \hline \end{gathered}$	$\begin{gathered} \text { U/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	$\begin{gathered} \text { D/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	AVG. DEPTH (feet)		$\begin{aligned} & \text { IT COST } \\ & \text { (\$/If) } \end{aligned}$		COST
-5C028.1	20	27	184	9.177	8.626	9	\$	302.00	\$	55,568
-6C033.1	20	27	338	8.835	8.496	9	\$	302.00	\$	102,076
-6C029.1	20	27	279	8.565	9.735	9	\$	302.00	\$	84,258
-6C028.1	20	27	217	9.896	14.167	12	\$	302.00	\$	65,534
-6B012.1	20	27	335	14.285	9.156	12	\$	302.00	\$	101,170
-6B009.1	20	27	328	9.205	7.477	8	\$	302.00	\$	99,056
-6B008.1	20	27	141	7.506	8.827	8	\$	302.00	\$	42,582
-6B007.1	20	27	367	8.876	8.716	9	\$	302.00	\$	110,834
-6B006.1	20	27	95	8.995	10.517	10	\$	302.00	\$	28,690
-6B005.1	20	27	69	10.585	9.71	10	\$	302.00	\$	20,838
-6B140.1	20	27	49	9.71	7.9	9	\$	302.00	\$	14,798
-6B139.1	20	27	76	7.9	7.182	8	\$	302.00	\$	22,952
-6B138.1	20	27	38	7.182	10.324	9	\$	302.00	\$	11,476
-6B137.1	20	27	292	10.324	9.234	10	\$	302.00	\$	88,184
-6B003.1	20	27	318	9.306	7.565	8	\$	302.00	\$	96,036
-6B002.1	20	27	56	7.614	7.906	8	\$	302.00	\$	16,912
-6B080.1	20	27	266	7.906	9.366	9	\$	302.00	\$	80,332
-6B001.1	20	27	49	9.366	9.435	9	\$	302.00	\$	14,798
-7B011.1	20	27	118	9.563	8.616	9	\$	302.00	\$	35,636
-7B010.1	20	27	154	8.964	11.574	10	\$	302.00	\$	46,508
-7B009.1	20	27	292	11.856	11.593	12	\$	302.00	\$	88,184
-7B008.1	20	27	141	11.603	12.605	12	\$	302.00	\$	42,582
-7B061.1	21	27	236	12.786	15.583	14	\$	302.00	\$	71,272
-7B060.1	21	27	66	15.685	13.283	14	\$	302.00	\$	19,932
-7B059.1	21	27	59	13.614	15.165	14	\$	302.00	\$	17,818
-7B043.1	21	27	374	15.454	13.864	15	\$	302.00	\$	112,948
-7B044.1	21	27	269	14.114	13.826	14	\$	302.00	\$	81,238
-7A028.1	21	27	384	14.003	12.625	13	\$	302.00	\$	115,968
-7A029.1	21	27	397	12.795	12.765	13	\$	302.00	\$	119,894
-7A030.1	21	27	253	13.024	13.435	13	\$	302.00	\$	76,406
-7A031.1	21	27	364	13.514	12.585	13	\$	302.00	\$	109,928
-7A032.1	21	27	157	12.864	12.025	12	\$	302.00	\$	47,414
-7A033.1	21	27	390	12.334	13.302	13	\$	302.00	\$	117,780
-7A034.1	21	27	276	13.433	15.913	15	\$	302.00	\$	83,352
-7A035.1	21	27	256	16.034	13.472	15	\$	302.00	\$	77,312
-8A011.1	21	27	62	13.472	13.764	14	\$	302.00	\$	18,724
-8A001.1	21	27	30	13.793	13.954	14	\$	302.00	\$	9,060
-8A020.1	21	27	220	13.954	13.093	14	\$	302.00	\$	66,440
-8A002.1	21	27	354	13.264	14.332	14	\$	302.00	\$	106,908
-8A003.1	21	27	341	14.584	13.442	14	\$	302.00	\$	102,982
-8A004.1	21	27	207	13.574	13.204	13	\$	302.00	\$	62,514
-8A005.1	21	27	276	13.433	13.093	13	\$	302.00	\$	83,352
-8A006.1	21	27	115	13.234	12.982	13	\$	302.00	\$	34,730
-8A007.1	21	27	66	13.392	12.302	13	\$	302.00	\$	19,932
-8A027.1	21	27	331	12.302	14.582	13	\$	302.00	\$	99,962
-8A008.1	21	27	203	14.982	14.252	15	\$	302.00	\$	61,306
-8A009.1	21	27	174	14.383	12.422	13	\$	302.00	\$	52,548
-8A081.1	21	27	115	12.422	13.203	13	\$	302.00	\$	34,730
-8A010.1	21	27	141	13.291	14.403	14	\$	302.00	\$	42,582
-8-A001.1	21	27	108	14.502	13.883	14	\$	302.00	\$	32,616
-8-A002.1	21	27	148	13.923	12.423	13	\$	302.00	\$	44,696
-8-A003.1	21	27	400	12.623	11.952	12	\$	302.00	\$	120,800
-8-A004.1	21	27	28	12.054	12.191	12	\$	302.00	\$	8,456
-8-A016.1	21	27	395	12.191	11.851	12	\$	302.00	\$	119,290
-8-A005.1	21	27	256	11.952	11.122	12	\$	302.00	\$	77,312
-8-A012.1	21	27	52	11.122	11.912	12	\$	302.00	\$	15,704
-8-A006.1	21	27	180	11.912	14.333	13	\$	302.00	\$	54,360
-8-A007.1	21	27	157	14.451	15.061	15	\$	302.00	\$	47,414
-8-A008.1	21	27	285	15.192	25.013	20	\$	302.00	\$	86,070
-8-A009.1	21	27	266	25.112	20.49	23	\$	302.00	\$	80,332
-8-A010.1	21	27	194	20.69	18.103	19	\$	302.00	\$	58,588
-8-A011.1	21	27	351	18.201	17.522	18	\$	302.00	\$	106,002
-8-B001.1	24	36	154	17.702	15.231	16	\$	381.00	\$	58,674
-8-B002. 1	24	36	367	15.783	17.902	17	\$	381.00	\$	139,827
-8-B003.1	24	36	282	18.201	20.582	19	\$	381.00	\$	107,442
-8-B004.1	24	36	394	20.73	24.193	22	\$	381.00	\$	150,114
-8-B012.1	24	36	394	24.452	24.411	24	\$	381.00	\$	150,114

LINK REFERENCE	EXISting DIAMETER (inches)	NEW DIAMETER (inches)	LENGTH (feet)	U/S DEPTH (feet)	D/S DEPTH (feet)	AVG. DEPTH (feet)		r Cost S/If)		OST
-8-B005.1	24	36	302	24.411	22.851	24	\$	381.00	\$	115,062
								Total:	\$,36,535

ESTIMATED PIPELINE CONSTRUCTION COST -- ROCK CREEK

TRUNK SEWER SYSTEM PROJECT DESCRIPTION	
JECT ID:.. Rock Creek	
LOCATION:	Rooney Parham Rd, Cunningham Lake Rd, Barrow Rd, Serenity Dr, Grassy Flat Creek
BRIEF PROJECT DESCRIPTIO	57,800 feet, 21-60 inch pipe
ESTIMATED COST	\$ 23,644,942
ASSUMPTIONS:	(i) New diameter based on pipe replacement, assumes some parallel pipe replacement
	(ii) Pipeline costs based on gravity construction in congested urban installations
	(iii) Costs include manholes, surface restoration and incidental costs, assuming no rock excavation
	(iv) Costs are 2001 \$ and include 25 percent for engineering and contingencies
ALTERNATIVES:...	Replace parallel pipes with single, larger pipe

| LINK
 REFERENCE | EXISTING
 DIAMETER
 (inches) | NEW DIAMETER
 (inches) | LENGTH
 (feet) | U/S DEPTH
 (feet) | D/S DEPTH
 (feet) | AVG. DEPTH
 (feet) | UNIT COST |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | (\$/If) | COST |
| :--- |

LINK REFERENCE	$\begin{aligned} & \text { EXISTING } \\ & \text { DIAMETER } \\ & \text { (inches) } \end{aligned}$	NEW DIAMETER (inches)	$\begin{gathered} \text { LENGTH } \\ \text { (feet) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { U/S DEPTH } \\ & \text { (feet) } \end{aligned}$	$\begin{gathered} \text { D/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	AVG. DEPTH (feet)		$\begin{aligned} & \text { IT COST } \\ & (\$ / \mathrm{f}) \end{aligned}$		COST
-1E046.1	24	30	266	10.48	9.29	10	\$	320.00	\$	85,120
-1F086.1	24	30	258	9.29	10.32	10	\$	320.00	\$	82,560
0F001.1	24	30	319	10.32	10.1	10	\$	320.00	\$	102,080
0F002.1	24	36	160	10.1	9.82	10	\$	381.00	\$	60,960
0F003.1	24	36	218	9.82	12.87	11	\$	381.00	\$	83,058
0F004.1	24	36	99	12.87	8.75	11	\$	381.00	\$	37,719
0F005.1	24	36	477	8.75	14.99	12	\$	381.00	\$	181,737
0F026.1	24	36	346	14.99	11.8	13	\$	381.00	\$	131,826
0F137.1	24	36	216	11.8	11.2	12	\$	381.00	\$	82,296
0F135.1	24	36	310	11.45	9.4	10	\$	381.00	\$	118,110
0F136.1	24	36	328	9.4	9.29	9	\$	381.00	\$	124,968
0 E 080.1	24	36	308	9.29	9.53	9	\$	381.00	\$	117,348
0 E 079.1	24	36	347	9.53	10.01	10	\$	381.00	\$	132,207
0E078.1	24	36	272	10.11	12.04	11	\$	381.00	\$	103,632
0E168.1	24	36	177	12.14	16.26	14	\$	381.00	\$	67,437
OE169.1	24	36	235	16.31	11.26	14	\$	381.00	\$	89,535
1E140.1	24	36	24	11.29	16.02	14	\$	381.00	\$	9,144
1E116.1	24	36	223	16.12	12.12	14	\$	381.00	\$	84,963
1E115.1	24	36	78	12.22	12.1	12	\$	381.00	\$	29,718
1E114.1	30	36	483	12.48	10.33	11	\$	381.00	\$	184,023
1E113.1	30	36	479	10.36	6.6	8	\$	381.00	\$	182,499
1E112.1	30	36	319	7.6	12.79	10	\$	381.00	\$	121,539
1E111.1	30	36	131	13.02	19.1	16	\$	381.00	\$	49,911
1F049.1	30	36	330	19.15	15.6	17	\$	381.00	\$	125,730
1F048.1	30	36	251	15.62	16.81	16	\$	381.00	\$	95,631
1F047.1	30	36	319	16.82	12.15	14	\$	381.00	\$	121,539
1F046.1	30	36	405	14.32	9.48	12	\$	381.00	\$	154,305
1F044.1	30	36	87	9.48	10.44	10	\$	381.00	\$	33,147
1F129.1	30	36	121	10.44	11.09	11	\$	381.00	\$	46,101
1F043.1	30	36	241	11.1	9.85	10	\$	381.00	\$	91,821
1F041.1	30	36	411	11.9	11.38	12	\$	381.00	\$	156,591
1F040.1	30	36	146	11.4	13.02	12	\$	381.00	\$	55,626
1 F039.1	30	36	486	13.06	14.47	14	\$	381.00	\$	185,166
1G068.1	30	36	371	14.5	13.58	14	\$	381.00	\$	141,351
1G065.1	30	42	343	13.6	12.8	13	\$	414.00	\$	142,002
1G064.1	30	42	348	12.87	15	14	\$	414.00	\$	144,072
1G019.1	30	42	90	15.06	15.65	15	\$	414.00	\$	37,260
1G149.1	30	42	120	15.65	16.6	16	\$	414.00	\$	49,680
1G017.1	30	42	70	16.65	14.62	16	\$	414.00	\$	28,980
1G014.1	30	42	451	14.68	17.19	$\dagger 6$	\$	414.00	\$	186,714
1G012.1	30	42	183	17.21	13.61	15	\$	414.00	\$	75,762
1G009.1	30	42	167	13.65	10.88	12	\$	414.00	\$	69,138
-1F014.2	8	24	51	6.7	8.7	8	\$	283.00	\$	14,433
-1F039.1	15	24	313	8.81	7.69	8	\$	283.00	\$	88,579
-1F040.1	15	24	303	7.69	7	7	\$	283.00	\$	85,749
-1F041.1	15	24	246	7.18	10.96	9	\$	283.00	\$	69,618
-1F042.1	15	24	140	10.96	9	10	\$	283.00	\$	39,620
-1F043.1	15	24	171	9.13	8	9	\$	283.00	\$	48,393
-1F054.1	15	24	240	8	8.6	8	\$	283.00	\$	67,920
-1F055.1	15	24	299	8.6	7.5	8	\$	283.00	\$	84,617
-1F071.1	15	24	75	7.5	8.4	8	\$	283.00	\$	21,225
-1F072.1	15	36	126	8.56	6.17	7	\$	381.00	\$	48,006
-1F073.1	15	36	100	6.17	5	6	\$	381.00	\$	38,100
-1F074.1	15	36	100	5	7.12	6	\$	381.00	\$	38,100
0F139.1	15	36	245	7.13	7.8	7	\$	381.00	\$	93,345
OF140.1	15	36	324	7.94	9.5	9	\$	381.00	\$	123,444
OF011.1	15	36	70	9.64	11.49	11	\$	381.00	\$	26,670
OF012.1	15	36	210	11.49	6.6	9	\$	381.00	\$	80,010
OF013.1	15	36	268	6.61	6.5	7	\$	381.00	\$	102,108
0F014.1	15	36	282	6.69	7.65	7	\$	381.00	\$	107,442
0F015.1	15	36	50	7.65	7.91	8	\$	381.00	\$	19,050
OF018.1	15	36	283	7.91	8.38	8	\$	381.00	\$	107,823
0F019.1	15	36	70	8.38	7.75	8	\$	381.00	\$	26,670
0F020.1	18	36	67	8.11	8.03	8	\$	381.00	\$	25,527
OF145.1	18	36	281	8.03	6	7	\$	381.00	\$	107,061
0E069.1	18	36	250	6	9.5	8	\$	381.00	\$	95,250

LINK REFERENCE	EXISTING DIAMETER (inches)	NEW DIAMETER (inches)	LENGTH (feet)	$\begin{gathered} \text { U/S DEPTH } \\ \text { (feet) } \end{gathered}$	$\begin{aligned} & \text { D/S DEPTH } \\ & \text { (feet) } \end{aligned}$	AVG. DEPTH (feet)		T Cost \$/If)		COST
0E070.1	18	36	250	9.63	8.1	9	\$	381.00	\$	95,250
0E071.1	18	36	293	8.1	12.8	10	\$	381.00	\$	111,633
0E072.1	18	36	137	13	8	11	\$	381.00	\$	52,197
0E073.1	18	36	170	8	7.73	8	\$	381.00	\$	64,770
0E074.1	18	36	268	7.73	9.3	9	\$	381.00	\$	102,108
0E076.1	18	36	45	9.45	12.7	11	\$	381.00	\$	17,145
1E117.1	18	36	339	12.7	8.6	11	\$	381.00	\$	129,159
1E118.1	18	36	96	8.74	8.15	8	\$	381.00	\$	36,576
1E149.1	18	36	129	8.15	8.2	8	\$	381.00	\$	49,149
1E119.1	18	36	261	8.26	5.8	7	\$	381.00	\$	99,441
1E120.1	18	36	103	5.86	6.28	6	\$	381.00	\$	39,243
1E121.1	18	36	276	6.28	6.9	7	\$	381.00	\$	105,156
1E122.1	18	36	285	6.97	6.62	7	\$	381.00	\$	108,585
1E123.1	18	36	150	6.62	9.7	8	\$	381.00	\$	57,150
1E124.1	18	36	164	9.71	8.87	9	\$	381.00	\$	62,484
1E125.1	18	36	166	8.97	10.9	10	\$	381.00	\$	63,246
1F008.1	18	36	251	10.99	7.49	9	\$	381.00	\$	95,631
1 F007.1	18	36	46	7.5	7.7	8	\$	381.00	\$	17,526
$1 F 006.1$	18	36	280	7.7	11.8	10	\$	381.00	\$	106,680
1F009.1	21	36	324	12.36	5.41	9	\$	381.00	\$	123,444
1 F010.1	21	36	414	5.57	9.4	7	\$	381.00	\$	157,734
$1 F 011.1$	21	36	428	9.58	12.74	11	\$	381.00	\$	163,068
1F042.1	21	36	22	12.87	8.586	11	\$	381.00	\$	8,382
1F028.1	21	36	362	8.586	6.41	7	\$	381.00	\$	137,922
1 F029.1	21	36	146	6.6	9.68	8	\$	381.00	\$	55,626
1F030.1	21	36	357	9.68	9.25	9	\$	381.00	\$	136,017
1F031.1	21	36	157	9.32	5.44	7	\$	381.00	\$	59,817
1F032.1	21	36	175	5.45	8.65	7	\$	381.00	\$	66,675
1G091.1	18	36	186	9	9.45	9	\$	381.00	\$	70,866
1G090.1	18	36	305	9.45	8.82	9	\$	381.00	\$	116,205
1G089.1	18	36	215	8.82	8.08	8	\$	381.00	\$	81,915
1G088.1	18	36	201	8.08	7.32	8	\$	381.00	\$	76,581
1G087.1	18	36	278	7.32	6.65	7	\$	381.00	\$	105,918
1G086.1	18	36	50	6.65	7.11	7	\$	381.00	\$	19,050
1G074.1	21	36	529	10.91	13.2	12	\$	381.00	\$	201,549
1G016.1	24	36	111	13.2	9.85	12	\$	381.00	\$	42,291
1G015.1	24	36	296	10.03	7.57	9	\$	381.00	\$	112,776
1G013.1	24	36	300	7.65	7.26	7	\$	381.00	\$	114,300
1G011.1	24	36	164	7.27	5.2	6	\$	381.00	\$	62,484
1G010.1	24	36	287	5.45	6.54	6	\$	381.00	\$	109,347
1G006.1	24	36	352	6.56	6.96	7	\$	381.00	\$	134,112
1G005.1	24	36	71	6.98	7.35	7	\$	381.00	\$	27,051
1G002.1	24	36	265	7.39	5.24	6	\$	381.00	\$	100,965
1G001.1	24	36	167	5.26	6.09	6	\$	381.00	\$	63,627
2 H 031.1	24	36	450	6.14	11.08	9	\$	381.00	\$	171,450
2H030.1	24	36	345	11.08	12.78	12	\$	381.00	\$	131,445
2 H 029.1	24	36	347	12.78	12.12	12	\$	381.00	\$	132,207
2H028.1	24	36	8	12.15	12.38	12	\$	381.00	\$	3,048
2 H 027.1	24	36	138	13.04	12.08	13	\$	381.00	\$	52,578
2 H 026.1	24	36	279	12.38	11.72	12.	\$	381.00	\$	106,299
2 H 025.1	24	36	47	11.83	11.72	12	\$	381.00	\$	17,907
2 H 024.1	30	36	58	11.81	10.8	11	\$	381.00	\$	22,098
2 H 023.1	30	36	228	10.8	7.5	9	\$	381.00	\$	86,868
2 H 022.1	30	36	155	7.5	7.5	8	\$	381.00	\$	59,055
2 H 021.1	30	36	55	7.5	10.21	9	\$	381.00	\$	20,955
2 H 020.1	30	36	234	10.21	11	11	\$	381.00	\$	89,154
2 H 019.1	30	36	250	11	5.6	8	\$	381.00	\$	95,250
2 H 018.1	30	36	475	5.6	7.23	6	\$	381.00	\$	180,975
2H017.1	30	36	350	7.23	8.08	8	\$	381.00	\$	133,350
2H016.t	30	36	200	8.08	8.65	8	\$	381.00	\$	76,200
2H015.1	24	36	473	8.79	8.43	9	\$	381.00	\$	180,213
3 H 094.1	24	36	295	8.43	9.4	9	\$	381.00	\$	112,395
3H068.1	24	36	250	9.4	10.57	10	\$	381.00	\$	95,250
$3 \mathrm{H081.1}$	24	36	300	10.57	12	11	\$	381.00	\$	114,300
3 H 069.1	24	36	200	12	7.9	10	\$	381.00	\$	76,200
3 H 070.1	24	36	30	7.9	10.17	9	\$	381.00	\$	11,430
3H074.2	24	36	375	10.53	11.4	11	\$	381.00	\$	142,875

LINK REFERENCE	EXISTING DIAMETER (inches)	NEW DIAMETER (inches)	$\begin{aligned} & \text { LENGTH } \\ & \text { (feet) } \end{aligned}$	$\begin{gathered} \text { U/S DEPTH } \\ \text { (feet) } \end{gathered}$	$\begin{gathered} \text { D/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	AVG. DEPTH (feet)		IT COST (S/lf)		COST
3H076.1	24	36	179	11.4	11.98	12	\$	381.00	\$	68,199
3H078. 1	24	36	233	11.98	11.8	12	\$	381.00	\$	88,773
3H079.1	24	36	336	11.8	12.8	12	\$	381.00	\$	128,016
31025.1	24	36	318	12.8	9.11	11	\$	381.00	\$	121,158
31028.1	24	36	318	9.11	8.24	9	\$	381.00	\$	121,158
31027.1	24	36	201	8.24	14.68	11	\$	381.00	\$	76,581
31035.1	24	36	52	14.78	14.96	15	\$	381.00	\$	19,812
31034.1	24	36	112	14.96	14.64	15	\$	381.00	\$	42,672
31033.1	24	36	170	14.82	5.64	10	\$	381.00	\$	64,770
31022.1	24	36	138	5.64	11.3	8	\$	381.00	\$	52,578
31021.1	24	36	125	11.3	11.57	11	\$	381.00	\$	47,625
31020.1	24	36	65	11.57	10.8	11	\$	381.00	\$	24,765
31019.1	24	36	334	10.8	8.97	10	\$	381.00	\$	127,254
31018.1	24	36	334	8.97	11.11	10	\$	381.00	\$	127,254
31016.1	24	36	98	11.11	11.52	11	\$	381.00	\$	37,338
31039.1	42	54	168	16.01	16.21	16	\$	603.00	\$	101,304
31037.1	42	54	177	16.24	13.86	15	\$	603.00	\$	106,731
31038.1	42	54	252	13.95	15.37	15	\$	603.00	\$	151,956
31007.1	42	54	459	15.86	15.26	16	\$	603.00	\$	276,777
3.002 .1	42	54	12	15.41	12.68	14	\$	603.00	\$	7,236
3J003. 1	42	54	11	12.68	15.93	14	\$	603.00	\$	6,633
3 J 004.1	42	54	137	16	15.91	16	\$	603.00	\$	82,611
3.0005 .1	42	54	392	15.96	14.29	15	\$	603.00	\$	236,376
3 J 006.1	42	54	402	14.39	16.32	15	\$	603.00	\$	242,406
3 J 007.1	42	54	472	16.39	16.65	17	\$	603.00	\$	284,616
3.008 .1	42	54	279	16.72	13.14	15	\$	603.00	\$	168,237
3 J 009.1	42	54	465	13.22	10.89	12	\$	603.00	\$	280,395
3 J 010.1	42	54	197	11.07	13.1	12	\$	603.00	\$	118,791
3 J 011.1	42	54	342	13.16	18.47	16	\$	603.00	\$	206,226
3 J 012.1	42	54	366	18.54	19.88	19	\$	603.00	\$	220,698
3 J 013.1	42	54	21	20.09	20.19	20	\$	603.00	\$	12,663
3J014.1	42	54	823	20.22	12.86	17	\$	603.00	\$	496,269
ЗК069.1	42	54	221	12.89	13.15	13	\$	603.00	\$	133,263
3K068. 1	42	54	612	13.19	13.62	13	\$	603.00	\$	369,036
3K064.1	42	54	828	13.66	11.42	13	\$	603.00	\$	499,284
3K061.1	42	54	824	11.53	15.9	14	\$	603.00	\$	496,872
3L078.1	42	54	30	16.18	15.41	16	\$	603.00	\$	18,090
3L080.1	42	54	455	15.48	5.76	11	\$	603.00	\$	274,365
3L081.1	42	54	399	5.83	14.55	10	\$	603.00	\$	240,597
3 L 082.1	42	54	156	14.79	14.49	15	\$	603.00	\$	94,068
3L083.1	42	54	135	14.6	13.2	14	\$	603.00	\$	81,405
3L106.1	42	54	407	13.38	18.75	16	\$	603.00	\$	245,421
3L084.1	42	54	402	18.81	18.83	19	\$	603.00	\$	242,406
3L052. 1	48	60	35	18.9	18.67	19	\$	663.30	\$	23,216
3L053.1	48	60	461	18.81	17.57	18	\$	663.30	\$	305,781
3L054.1	48	60	180	17.49	17.29	17	\$	663.30	\$	119,394
3L055.1	48	60	357	17.33	13.72	16	\$	663.30	\$	236,798
3L056.1	48	60	497	13.76	12.39	13	\$	663.30	\$	329,660
4L018.1	48	60	825	12.42	15.39	14	\$	663.30	\$	547,223
4L017.1	48	60	875	15.39	18.53	17	\$	663.30	\$	580,388
4L016.1	48	60	451	18.58	21.4	20	\$	663.30	\$	299,148

Total: \$ 23,644,942

PRELIMINARY COST ESTIMATES - LITTLE ROCK SEWER STUDY
 Crist Engineers, Inc. October 19, 2001

1. $72^{\prime \prime}$ Gravity Sewer from Adams Field WWTP site (begin at South $60^{\prime \prime}$ at Station $4+50$, south edge of plant grounds) to connect to existing Interceptor approx. 500' west of University Ave. (no rock excavation)

45,771 l.f. Hobas FRP pipe w/ Hobas tee manholes, 5 gate structures

Estimated Project Cost: $\$ 30,360,000.00$

2. $60^{\prime \prime}$ Gravity Sewer from Adams Field WWTP site (begin at South 60 " at Station 4+50, south edge of plant grounds) to connect to existing Interceptor approx. 500' west of University Ave. (no rock excavation)

45,771 l.f. Hobas FRP pipe w/ Hobas tee manholes, 5 gate structures
Estimated Project Cost: $\$ 26,153,000.00$
3. Estimated "per lineal foot" project costs for gravity construction in congested urban installations, including manholes, surface restoration and incidental costs (no rock excavation):

Diameter, In.	Trench Depth, Ft.	Cost, \$/1.f.
12" PVC	8	172.00
15 " PVC	8	188.00
18" PVC	8	200.00
21" PVC	8	221.00
24" PVC	12	283.00
27" PVC	12	302.00
$30^{\prime \prime}$ PVC	12	320.00
$36^{\prime \prime}$ PVC	12	381.00
$42^{\prime \prime}$ PVC	12	414.00
48" Hobas	12	547.00
54" Hobas	12	603.00

4. Estimated "per lineal foot" project costs for force main construction in congested urban installations, including surface restoration and incidental costs, assumes 4' cover (no rock excavation):

Diameter, In.	
12" D.I.	
16" D.I.	108.00
18" D.I.f.	17.00
24" D.I.	122.00
30" D.I.	140.00
36" D.I.	156.00
42" D.I.	178.00
48" D.I.	198.00
	236.00

"Project Costs" are 2001 estimated construction costs plus a 25% engineering and contingency factor.

CRIST ENGINEERS, INC. PRELIMINARY COST ESTIMATE SUMMARY SHEET

PROJECT: Little Rock - 45,771 1.f. 60" Sewer Main (Hobas Pipe) (No Rock Excavation)

DATE: 10/19/01		JOB NO.: 0036		BY: JEG	
Item	Description	Unit		Estimated	
No.			Quantity	Unit Cost	Total Cost
1	60'sewer $0^{\prime}-10^{\prime}$ deep	l.f.	0	\$242.51	\$0.00
2	$60^{\prime \prime}$ sewer $10^{\prime}-12^{\prime}$ deep	l.f.	536	\$247.71	\$132,772.56
3	$60^{\prime \prime}$ sewer 12' - 14' deep	1.f.	3662	\$254.07	\$930,404.34
4	$60^{\prime \prime}$ sewer $14^{\prime}-16^{\prime}$ deep	I.f.	8348	\$261.63	\$2,184,087.24
5	$60^{\prime \prime}$ sewer $16^{\prime}-18^{\prime}$ deep	1.f.	6088	\$270.35	\$1,645,890.80
6	60's sewer 18^{\prime} - 20' deep	l.f.	7563	\$301.37	\$2,279,261.31
7	$60^{\prime \prime}$ sewer 20' - 22' deep	1.f.	1779	\$312.49	\$555,919.71
8	$60^{\prime \prime}$ sewer $22^{\prime}-24^{\prime}$ deep	1.f.	925	\$324.81	\$300,449.25
9	$60^{\prime \prime}$ sewer $24^{\prime}-26^{\prime}$ deep	1.f.	2675	\$338.29	\$904,925.75
10	$60^{\prime \prime}$ sewer 26' - 28^{\prime} deep	1.f.	1544	\$352.93	\$544,923.92
11	$60^{\prime \prime}$ sewer $28^{\prime}-30^{\prime}$ deep	1.f.	5089	\$368.81	\$1,876,874.09
12	$60^{\prime \prime}$ sewer 30' - 32' deep	1.f.	1627	\$385.57	\$627,322.39
13	$60^{\prime \prime}$ sewer 32' - 34^{\prime} deep	1.f.	1976	\$403.97	\$798,244.72
14	$60^{\prime \prime}$ sewer $34^{\prime}-36^{\prime}$ deep	1.f.	1389	\$423.57	\$588,338.73
15	60' sewer over 36' deep	l.f.	0	\$443.97	\$0.00
16	$60^{\prime \prime}$ sewer in $96^{\prime \prime}$ encase	l.f.	2420	\$1,450.00	\$3,509,000.00
17	straight sewer manhole 0' - 12' deep	ea.	37	\$27,000.00	\$999,000.00
18	angle sewer manhole $0^{\prime}-12^{\prime}$ deep	ea.	46	\$30,000.00	\$1,380,000.00
19	add'l depth in manholes	v.f.	714	\$1,200.00	\$856,800.00
20	special structures	ea.	5	\$100,000.00	\$500,000.00
21	asphalt pavement cut \& replaced	s.y.	4366	\$50.00	\$218,300.00
22	levee crossing	I.f.	150	\$600.00	\$90,000.00
	Engineering and Contingencies @ 25\%				\$5,230,628.70
	Total this sheet				\$26,153,143.51

CRIST ENGINEERS, INC. PRELIMINARY COST ESTIMATE SUMMARY SHEET

PROJECT: Little Rock - 45,771 1.f. $72^{\prime \prime}$ Sewer Main (Hobas Pipe) (No Rock Excavation)
DATE: 10/19/01 JOB NO: 0036 BY: JEG

Item	Description	Unit	Estimated		
No.			Quantity	Unit Cost	Total Cost
1	72'sewer 10' - 12' deep	1.f.	536	\$301.49	\$161,598.64
2	$72^{\prime \prime}$ sewer 12' - 14' deep	1.f.	3662	\$307.57	\$1,126,321.34
3	$72^{\prime \prime}$ sewer 14' - 16' deep	I.f.	8348	\$314.81	\$2,628,033.88
4	72's sewer 16' - 18' deep	l.f.	6088	\$323.29	\$1,968,189.52
5	$72^{\prime \prime}$ sewer 18' - 20' deep	1.f.	7563	\$383.89	\$2,903,360.07
6	$72^{\prime \prime}$ sewer $20^{\prime}-22^{\prime}$ deep	I.f.	1779	\$394.73	\$702,224.67
7	72' sewer $22^{\prime}-24^{\prime}$ deep	l.f.	925	\$406.73	\$376,225.25
8	72's sewer 24^{\prime} - 26^{\prime} deep	1.f.	2675	\$419.89	\$1,123,205.75
9	$72^{\prime \prime}$ sewer $26^{\prime}-28^{\prime}$ deep	I.f.	1544	\$434.29	\$670,543.76
10	72' sewer 28' - 30' deep	I.f.	5089	\$449.81	\$2,289,083.09
11	72's sewer 30' - 32' deep	1.f.	1627	\$466.57	\$759,109.39
12	72's sewer 32' - 34^{\prime} deep	l.f.	1976	\$484.49	\$957,352.24
13	72' sewer 34' - 36^{\prime} deep	1.f.	1389	\$503.61	\$699,514.29
14	$72^{\prime \prime}$ sewer over 36' deep	1.f.	0	\$523.89	\$0.00
15	$72^{\prime \prime}$ sewer in 96" encase	I.f.	2420	\$1,500.00	\$3,630,000.00
16	straight sewer manhole $0^{\prime}-12^{\prime}$ deep	ea.	37	\$30,000.00	\$1,110,000.00
17	angle sewer manhole $0^{\prime}-12^{\prime}$ deep	ea.	46	\$33,000.00	\$1,518,000.00
18	add'l depth in manholes	v.f.	714	\$1,200.00	\$856,800.00
19	special structures	ea.	5	\$100,000.00	\$500,000.00
20	asphalt pavement cut \& replaced	s.y.	4366	\$50.00	\$218,300.00
21	levee crossing	1.f.	150	\$600.00	\$90,000.00
	Engineering and Contingencies @ 25\%				\$6,071,965.47
	TOTAL				\$30,359,827.36

Item Description Preliminary Cost Eqn	Qty	\# of Units	Cost @ Original ENR ${ }^{\text {A }}$	Cost @ Current		
					ENR ${ }^{\text {B }}$	
Line Work						
Utility Trunk Sewer Upgrades					\$	53,080,000
72" Parallel to Upper Twin 60" Trunks						
\$=663.30 * L.F.	45772			\$	30,400,000	
Force Main Improvements (24" @ 6000 L.F.)						
\$=140.00*L.F.	6000			\$	840,000	
Force Main Improvements (30" @ 41,500 L.F.) ${ }^{\text {C }}$				\$	9,720,000	
Pump Stations						
Cantrell - 25MGD to 40 MGD						
Lift Station Upgrade \$ $=391,980$ * ${ }^{\wedge} 0.6700$ (MGD)	40	1	\$4,641,348	\$	4,600,000	
Arch - 35 MGD to $60 \mathrm{MGD}^{\text {C }}$				\$	2,920,000	
Jimerson-12 MGD						
Lift Station Upgrade $\$=391,980$ * ${ }^{\wedge} 0.6700$ (MGD)	12	1	\$2,072,000	\$	2,540,000	
I-430 Booster Sta - 1 MGD						
Lift Station Upgrade \$ $=391,980$ * ${ }^{\wedge} 0.6700$ (MGD)	1	1	\$391,980	\$	400,000	
Treatment						
Little Maumelle 4 MGD WWTP (w/ 30 MG Storage) ${ }^{\text {D }}$				\$	21,900,000	
Adam WWTP Upgrades (94 MGD w/ 25 MG Storage) ${ }^{\text {E }}$				\$	24,000,000	
Fourche WWTP Upgrade (from 38 MGD to 60 MGD) ${ }^{\text {C }}$				\$	23,420,000	

Total: \$ 173,820,000
Notes: A. Original ENR Based on Los Angeles 1994 Construction Cost Index (CCI)
B. Current ENR Based on National Average of CCI as of Oct. 2001
C. Costs developed from information in Appendix F
D. Cost developed from information in Appendix G
E. Cost developed from information in Appendix E

City of Little Rock Wastewater Utility System Evaluation \& Capacity Assurance Plan

 Citizens Advisory Group

City of Little Rock Wastewater Utility System Evaluation \& Capacity Assurance Plan

Citizens Advisory

Group

Table of Contents

I. Introduction
A. Program information
B. Citizens Advisory Group Information
II. Meeting Agendas
III. Meeting \#1

* Overview \& Organization
* Notes
IV. Meeting \#2
* Identification \& Definition of Problems
* Notes
V. Meeting \#3
* Results of Alternative Analysis \& Preliminary Plan
* Notes
VI. Meeting \#4
* Committee recommendations \& Final Plan
* Notes
VII. Meeting Minutes
VIII. Exhibits
* Handouts, Maps, Worksheets

Section 1
 Introduction

Stakeholder	CAG Designate	Phone number(s)	Street Address	City	Postal Code
Regulators					
Ark Department of Health	Raymond Haeggons	$\begin{aligned} & \text { (B) } 501.280 .3154 \\ & \text { (FX)501.280.3308 } \end{aligned}$	Pulaski County Central Health Unit Environmental Health Protection 3915 West 8th Street	LR	72204
Ark Dept. of Environ. Quality	Gary Griffin	(B) 501.682 .0613 (H) 501.262 .4918 (FX) 501.682 .0910	Permits Branch Arkansas Dept.of Environmental Quality PO Box 8913	LR	72219
Neigborhood Coalitions					
SW LR United for Progress	Troy Laha	(B) 501.565 .7384	6602 Baseline Road	LR	72209
Coalition of LR Neighborhoods	Jim Lynch	(B) 501.569 .8744 (H) 501.661 .0406	16 Lenon Dr.	LR	72207
West Central LR Neighborhoods	George Brown	(H) 501.225.3549	2823 Lehigh Drive	LR	72204
Neighborhood Connections	Mike Kumpuris	(H) 501.562.1288	7606 Westwood Avenue	LR	72207
Industrial/Commercial Users					
LR Industrial Users	Pete Christiansen	(B) 501.372 .5254 (FX) 501.210.0478	Falcon Jet Corp P.O. Box 967	LR	72203
LR Commercial Users	Charles Mathis	(B) 501.202 .2696 (FX) 501.202.1184	Baptist Health, Director of Facilities Mgmt. 9607 Interstate 630, Exit 7	LR	72205
Board/Committees					
CLR Board of Directors	Director Willie Hinton	501-529-8993 (cell) 501.371.4516 Megan Steinbeck	LR City Hall 500 West Markham, Room 203	LR	72201
LR Sanitary Sewer Committee	Pat Miller	(B) 501.975.0250 (H) 501.664.9220 (FX) 501.376.6256	Millennieum Capital Advisors LLC 425 West Captiol, Suite 300	LR	72201
Environmental Groups					
Sierra Club	Laura Clift	(H) 501-664-7914	14 Alpine Ct.	LR	72205
Stormwater Utility					
CLR Public Works	Bob Turner	(B) 501.371 .4720 (F) $371-4843$	CLR Public Work Department 701 West Markham	LR	72201

Citizens Advisory Group Overview

A Citizen's Advisory Group (CAG) will be used to ensure that community values are reflected the decisions and recommendations of the System Evaluation \& Capacity Assurance Plan for Little Rock. The CAG should reflect the community and provide representation for environmental, tax/rate payer, environmental justice, and other special interest groups.

Roles \& Objectives of Group

- To serve as a communication link between the community and the Little Rock Wastewater Utility
- To assist in educating the public about the issues, proposed solutions and the decision-making process
- To define and prioritize community-related issues related to wastewater
- To articulate community values and opinions
- To review studies results and help evaluate alternatives using agreed-upon criteria
- To issue recommendations to the Wastewater Utility
- To become familiar with the issues and take identified issues back to their constituents
- To provide input on the cost-effectiveness of the program
- To identify potential public concerns regarding wastewater-related issues and solutions facing the City of Little Rock and the Utility
- To identify potential community impacts including noise, access limitations, and traffic disruptions
- To assist the city in shaping policies and making specific recommendations for the prioritization of the elements of the Wastewater master

It is anticipated that the CAG will meet four times with an additional tour of wastewater facilities. The initial meetings should include tours of existing wastewater facilities. It is anticipated that the meetings will be open to the public and will be announced in the local media. The group members will be provided with prior notice of the meetings and as a meeting agenda. A copy of the minutes summarizing recommendations made and action taken will be provided following each meeting.

Section 2
Meeting Agendas

Citizens Advisory Group
 Program Overview

The Citizen Advisory Group program will consist of four meetings and a facility tour culminating in final recommendations to the Little Rock Wastewater Utility:

Workshop 1 - Overview and Organization

a) Introduction of group members, facilitator, Engineering team
b) Overview of the role of the Group
c) Teambuilding exercise
d) Overview of Little Rock's wastewater system and the issues facing the Utility
e) Overview of the master planning project and accomplishments to date
f) Development of the Group's mission and objective
g) Development of Group policies and procedures
h) Agenda and schedules for future meetings
i) Facility Tour

- Wastewater Pump Station
- Wastewater Treatment Plant

Workshop 2 - Study Results

a) Opening and general question/answer forum
b) Background information on collection systems
c) Presentation on the results of the collection system study
d) Identification of specific issues and problems to be addressed in the master plan
e) Discussion of community issues and concerns

Workshop 3 - Alternatives and Evaluation Criteria

a) Overview of progress to date
b) Presentation and discussion of planning alternatives
c) Development of evaluation criteria

Workshop 4 - Group Recommendations

a) Review of alternatives and criteria
b) Results of technical evaluations
c) Group evaluation process
d) Development of recommended alternatives
e) Prioritization of recommended alternatives

Section 3
 Meeting \#1

Thursday
5:30pm-7:30pm
September 6, 2001

Location: Main Library, 100 Rock St.East Room $1^{\text {st }}$ Floor

Parking@ the lot across from the Main entrance on Rock Street.

Little Rock Wastewater Utility Citizens Advisory Group

Meeting I
September 6, 2001
5:30-7:30 PM
Main Library East Room

AGENDA

Introduction of group members, facilitator, and engineering team Overview of the role of the group Overview of Little Rock's wastewater system and issues Overview of the master planning project and accomplishments Development of the Group's mission and objectives
Development of the Group's policies and procedures
Discussion of Agenda and schedules for future meetings
Facility tour.

MEETING SCHEDULE

Meeting II

DATE: Thursday, September 13, 2001
TIME: 5:30-7:30 PM
PLACE: UALR Campus, Donaghey Student Center, Dogwood Room
PARKING: University Parking Deck - additional information will be provided at the first meeting.

Meeting III

DATE: Thursday, September 27, 2001
TIME: 5:30-7:30 PM
PLACE: Main Library, 100 Rock St. - East Room, $1^{\text {st }}$ Floor
PARKING: Public lot across from the Main entrance on Rock St.

Meeting IV

DATE: Thursday, October 25, 2001
TIME: 5:30-7:30 PM
PLACE: Main Library, 100 Rock St. - East Room, $1^{\text {st }}$ Floor
PARKING: Public lot across from the Main entrance on Rock St.

Little Rock Wastewater

citizens Advisory Group

The September 13th meeting will be held on the UALR Campus from 5:30-7:30 PM in the Dogwood Room of the Donaghey Student Center.

Directions to UALR:
Approach campus from Fair Park Blvd. Traveling South on Fair Park, make a right on 32nd Street. You will see signs on 32 nd Street for the Parking Deck. Make a left to enter the parking deck. Parking in the "Visitors Section." You can get to the Donaghey Student Center (the most central building on campus) on a walkway from the Parking Deck.

You will receive a parking pass at the meeting.
Directions to the Dogwood Room:
Enter the Student Center through the first door. Take the stairs to the second floor. Follow the hallway to the other end of the building. At the end of the hall, make a left into the cafeteria area. Past the cash registers, you will see a hall to your left. The Dogwood Room is off that hall. If you get lost, ask someone.

A campus map is on the back of these instructions.

Section 4 Meeting \#2

Thursday 5:30pm-7:30pm
September 27, 2001

Location: Main Library, 100 Rock St.East Room $1^{\text {st }}$ Floor

Parking@ the lot across from the Main entrance on Rock Street.

Citizen Advisory Group Workshop \#2 Little Rock System Evaluation and Capacity Assurance Plan
 September 27, 2001

Problem Areas:

Riverfront:

- Allsop/Country Club
- worst recorded I/I
- inline rehab possible (but low reduction of I/I)
- Country Club
- bottom of creek
- needs new pipe
- infiltration of adjacent stream
- capacity issue
- very difficult construction R/W issues
- exact locations of infiltration unknown
- possible solution: in-line rehab and new lines
- Jimerson Creek
- lines surcharging
- may be due to under capacity downstream
- elimination of Maumelle PS flow could solve problems
- Cantrell PS
- may not need to upsize if new WWTP added in at Maumelle
- increase in wet-well size could add volume to reduce upstream water levels

South 60:

- Barrow Addition (FM010)
- system backing up, overflows recorded
- possible problems will be eliminated when interceptor relief is in place
- South 60 Truss Pipe (U/S FM002, FM001)
- truss pipe, thin-walled pipe
- damaged lines and leaking system
- no overflows recorded, system experiencing huge I/I
- Rock Creek
- pipe surcharge / overflow conditions
- cross connection
- Granite Mountain (FM062)
- line back-up localized problem
- plant improvements may affect need for line improvements

North 60:

- Swaggerty (FM025)
- overflow caused by 24 -inch into 18 -inch line
- recommend upsizing 18 -inch to 24 -inch
- Barton North (FM029)
- localized surcharge
- major I/I/
$-8^{\text {th }}$ highest ranking on $\mathrm{I} /$ list
- District 84 (D/S of FM100)
- 36-inch experiences overflows, line back up from North 60
- District 119 (FM031)
- rehab review
- survey of existing pipe
- significant I/I
- CCTV showed pipe missing
- Coleman Creek (FM032/034)
- upper end - rehab complete, $20 \% \mathrm{I} / \mathrm{I}$ reduction
- high I/I, rehab underway in area
- Twin 60's Relief Interceptor
- largest project
- options include
wet-weather facility (storage)
remove and replace one of existing pipes with larger pipe parallel line for added capacity

Fourche:

- Brodie Creek
- problem area, cross connection to South 60
- problem may be relieved by parallel interceptor
- Other Areas
- capacity problems
- problem may be relieved by parallel interceptor

Maumelle:

- Major growth
- PS built in 1982
- Experiencing capacity problems
- Maumelle WWTP
- possible solution, WWTP located upstream of riverfront
- wet weather facility near Maumelle PS

Upper Hinson

- very high I/I due to old Truss Pipe
- expect truss pipe to continue to deteriorate; pipe 25 years old

Adams WWTP:

- Planning capacity upgrade (72 MGD present capacity)
- Have land available for wet weather facility or plant improvements

Arch St PS:

- Future upgrade to Fourche WWTP expected
- To maintain effective peak capacity for system Arch needs upgrade

Cheat Sheet of Terminology

I/I Inflow and Infiltration

- Storm water inflow may enter sewers from surface areas through open manhole lids, damaged manhole in streets or near drainage structures, or river/creek beds.
- Groundwater infiltration may enter sewers through separated line joints, cracked pipe, old / damaged service connections, cracked or damaged manholes, and eroded / deteriorated pipe.

Surcharge Condition

- Once line capacity has been reached, the system will begin to backup into the upstream system and raise water levels in manholes. The system is said to be in a surcharge condition until water levels recede and pipe flow is contained in the parameters of the line.

SSO Sanitary Sewer Overflow

- Any discharge of untreated sewage in to a body of water or ground surface that has not been permitted by the regulatory agency.

Overflows

- (for our purposes) Discharges of untreated sewage from any manhole, sewer line, or wastewater facility that has not been permitted by the regulatory agency. It should be noted that most discharges occur from manholes during surcharge conditions caused by storm events.

Permit Conditions

- Little Rock currently has discharge permits for 2 wastewater treatment plants, Adams and Fourche. Permits (NPDES) are regulated by the State and require that all discharged flows either meet or exceed limits for contaminant levels and amount of wastewater discharged from designated locations.

NPDES National Pollutant Discharge Elimination System

- Permit issued and regulated by the State under the authority of the EPA in order to comply with the Clean Water Act.

Little Rock

Citizens Advisory Group

Wet Weather Facility

- Structure whose primary function is to provide off-line storage for combined storm water / wastewater flows that exceed sewer system capacity during a storm /wet weather event due to excessive I/I. Once the storm surcharge has passed through the system, stored flow will be returned to the sewer system for eventual treatment. Treatment capabilities must be designed into the wet weather facility in the event storage capacity is exceeded and a discharge is required.

Lift Station

- A facility whose primary purpose is to convey wastewater by means of pumping where conveyance can not be accomplished by means of a gravity system.

Force Main

- Pipeline used to convey flow from a lift station to a discharge point. Force main usually carries flow under pressure.

Gravity Line

- Pipeline that conveys flow by means of gravity. Line has a positive slope from downstream to upstream and requires intermittent manholes for maintenance access and line cleaning.

Remove and Replace

- Occurs when existing pipelines are found to be under capacity or deteriorated badly enough that total line replacement must occur. This option for repair does not include pipe rehabilitation.

Pipeline Rehabilitation

- Usually a trenchless technology for pipeline repair. Cured-in-place, fold and form, slip lining, and pipe bursting are several options available.

Dry Weather Flow Condition

- Flow rate that is experienced under normal conditions. Where there is no I/I associated with storm activity and high groundwater conditions.

Wet Weather Flow Condition

- Flow rate usually experienced during storm activity. Where rainfall causes groundwater levels to rise above level of buried pipes and infiltration begins through damaged or corroded lines. Surface water also enters system through opened or damaged manholes.

[^0]
Section 5
 Meeting \#3

Thursday
5:30pm-7:30pm
October 25, 2001

Location: Main Library, 100 Rock St.East Room $1^{\text {st }}$ Floor

Parking @ the lot across from the Main entrance on Rock Street.

OPTION 1

	Price (\$)	
Line Work	$\$ 53.1$	Million
Utility Trunk Sewer Upgrades	$\$ 30.4$	Million
72" Parallel to Twin 60" Trunks	$\$ 7.5$	Million
36" Force Main (42,000 LF) from Arch		
Pump Stations	$\$ 2.3$	Million
Cantrell - 25MGD to 40 MGD	$\$ 6.6$	Million
Arch - 35 MGD to 60 MGD		
Treatment	$\$ 18.9$	Million
Little Maumelle 4 MGD WWTP with 20 MG Storage	$\$ 24.0$	Million

OPTION 2

Price (\$)

Line Work		
Utility Trunk Sewer Upgrades	$\$ 53.1$	Million
72" Parallel to Twin 60" Trunks	$\$ 30.4$	Million
30" Force Main from Little Maumelle LS to Gravity Line	$\$ 13.3$	Million
60" Gravity Line from Little Maumelle FM to Cantrell LS	$\$ 18.6$	Million
Twin 30" Force Main from Cantrell LS to Gravity Line	$\$ 1.0$	Million
72" Gravity Line from Cantrell	$\$ 17.5$	Million
36" Force Main (42,000 LF) from Arch	$\$ 7.5$	Million
Pump Stations		
Cantrell - 25MGD to 70 MGD $\$ 6.6$ Million Arch - 35 MGD to 60 MGD Little Maumelle to 16 MGD $\$ 6.6$ Million Treatment $\$ 2.4$ Million Adam WWTP Upgrades	$\$ 24.0$	Million

OPTION 3

Price (\$)
Line Work
Utility Trunk Sewer Upgrades \$53.1 Million
Pump Stations
Cantrell - 25MGD to 40 MGD \$2.3 Million
Storage
65 MG Sewer Surge Storage \$36.8 Million
Treatment
Little Maumelle 4 MGD WWTP with 20 MG Storage \$18.9 Million
Total: \$111.1 Million

OPTION 4

	Price (\$)	
Line Work		
Utility Trunk Sewer Upgrades	$\$ 53.1$	Million
72" Parallel to Twin 60" Trunks	$\$ 15.2$	Million
Pump Stations		
Cantrell - 25MGD to 40 MGD $\$ 2.3$ Million Arch - 35 MGD to 45 MGD $\$ 1.8$ Million Storage 40 MG Sewer Surge Storage $\$ 22.2$ Million Treatment Adam WWTP Upgrades Little Maumelle 4 MGD WWTP with 20 MG Storage $\$ 24.0$ Million Million Total: $\$ 137.5$	Million	

40 MG Sewer Surge Storage
Flow Equalization Storage \$17.7 M
Lift Station Construction \$4.5 M
85 MG Sewer Surge Storage \$36.8 M
Flow Equalization Storage
Lift Station Construction $\$ 29.3 \mathrm{M}$ $\$ 7.5 \mathrm{M}$
Cantrell Pump Station Upgrades
25 MGD to 40 MGD \$2.3M25 MGD to 70 MGD (Includes \$ for)Pump Station Upgrade$\$ 6.6 \mathrm{M}$
Force Main Upgrade to Twin 30" parallels $\$ 1.0 \mathrm{M}$
Gravity Line Upgrade to 72" DIA $\$ 17.5 \mathrm{M}$
Little Maumelle Pump Station UpgradesUpgrade Pump Station to 16 MGD (Includes \$ for)\$34.3 M
Pump Station Upgrade \$2.4 M
Upgrade Force Main to 30" DIA \$13.3 M
Upgrade Gravity Line to 60" DIA \$18.6 M
Arch Pump Station Upgrades
Upgrade Pump Station 35 MGD to 45 MGD\$1.8 M\$14.1 M
Upgrade to Pump Station36 " Force Main (42,000 lf)\$25 M
Upgrade Pump Station 35 MGD to 70 MGD (Includes \$ for)f)
$\$ 6.6 \mathrm{M}$\$7.5 M
Upgrade Adams WWTP \$24.0 M
Little Maumelle 4 MGD WWTP w/ 20MG Storage Capacity $\$ 18.9 \mathrm{M}$
Utility Trunk Sewer Upgrades \$53.1 M
72" Parallel to Twin 60" Trunks \$30.4 M

ESTIMATED PIPELINE CONSTRUCTION COST -- ALLSOP

LINK REFERENCE	EXISTING DIAMETER (inches)	NEW DIAMETER (inches)	LENGTH (feet)	U/S DEPTH (feet)	D/S DEPTH (feet)	AVG. DEPTH (feet)		T cost (\$/if)	COST	
5D096.1	10	18	28	9.16	9.06	9	\$	200.00	\$	5,600
5D095.1	10	18	158	9.06	14.92	12	\$	200.00	\$	31,600
5D094.1	10	18	264	14.92	12.97	14	\$	200.00	\$	52,800
50093.1	10	18	358	12.97	7.79	10	\$	200.00	\$	71,600
5D092.1	10	18	346	7.79	4.23	6	\$	200.00	\$	69,200
$6 \mathrm{D031.1}$	8	18	292	4.23	2.4	3	\$	200.00	\$	58,400
6D028.1	8	18	138	2.48	3.27	3	\$	200.00	\$	27,600
6D026.1	8	18	175	3.3	4.08	4	\$	200.00	\$	35,000
6D032.1	8	18	174	4.08	9.08	7	\$	200.00	\$	34,800
6D035.1	8	18	189	9.05	4.58	7	\$	200.00	\$	37,800
6D036.1	8	18	235	4.62	5.48	5	\$	200.00	\$	47,000
6D040.1	8	18	197	5.55	6.54	6	\$	200.00	\$	39,400
6D048.1	8	18	25	7.04	6.25	7	\$	200.00	\$	5,000
6D050.1	8	18	273	6.41	9.27	8	\$	200.00	\$	54,600
6D064.1	8	18	355	9.35	2.81	6	\$	200.00	\$	71,000
6D065.1	8	18	B4	3.04	6.5	5	\$	200.00	\$	16,800
6D094.1	8	18	81	6.85	4.09	5	\$	200.00	\$	16,200
6D095.1	8	18	153	4.33	7.01	6	\$	200.00	\$	30,600
6D092.1	8	18	134	7.01 2.94	2.94	5	\$	200.00	\$	26,800
6D074.1	8	18	211	3.41	3.41 4.85	4	\$	200.00 200.00	\$	21,000
6E156.1	12	18	97	4.85	4.11	4	\$	200.00	\$	19,400
6E155.1	12	18	55	4.11	3.98	4	\$	200.00	\$	11,000
6E144.1	12	18	193	4.09	4.27	4	\$	200.00	\$	38,600
6E143.1	10	18	344	4.27	4.13	4	\$	200.00	\$	68,800
7E055.1	8	18	62	4.13	5.97	5	\$	200.00	\$	12,400
7E121.1	8	18	45	5.97	3.12	5	\$	200.00	\$	9,000
7E057.1	8	18	195	3.34	4.14	4	\$	200.00	\$	39,000
7E058.1	8	18	179	4.32	3.25	4	\$	200.00	\$	35,800
7E059.1	8	18	73	3.28	6.99	5	\$	200.00	\$	14,600
7E120.1	8	18	30	6.99	2.9	5	\$	200.00	\$	6,000
7E060.1	8	18	142	3.04	4.67	4	\$	200.00	\$	28,400
7E062.1	8	18	237	4.91	7.31	6	\$	200.00	\$	47,400
7E063.1	8	18	119	7.35	3.7	6	\$	200.00	\$	23,800
7D030.1	9	18 18	64 106	3.7 5.972	5.972	5	\$	200.00	\$	12,800
70023.1	12	18	97	5.972 5.03	5.03 7.4	6	\$	200.00	\$	21,200
7D028. 1	12	18	133	7.44	6.38	7	\$	200.00	\$	19,400
7 D 026.1	10	18	152	6.5	5.03	6	\$	200.00	\$	30,400
7 D 022.1	10	18	154	5.12	4.98	5	\$	200.00	\$	30,800
7D021.1	10	18	330	5.23	3.58	4	\$	200.00	\$	66,000
$7 \mathrm{D020.1}$	10	18	339	3.65	3.89	4	\$	200.00	\$	67,800
$7 \mathrm{D019.1}$	12	18	168	3.89	6.017	5	\$	200.00	\$	33,600
7 0 029.1	12	18	282	6.017	3.58	5	\$	200.00	\$	56,400
7E001.1	12	18	187	3.58	4.29	4	\$	200.00	\$	37,400

Total: \$ 1,551,600

ESTIMATED PIPELINE CONSTRUCTION COST -- BARROW ADDITION

LINK REFERENCE	EXISTING DIAMETER (inches)	NEW DIAMETER (inches)	LENGTH (feet)	$\begin{gathered} \text { U/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	$\begin{gathered} \text { D/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	AVG. DEPTH (feet)		$\begin{aligned} & \text { IT COST } \\ & \text { (S/If) } \end{aligned}$		OST
1K120.1	12	18	327	10.85	5.79	8	\$	200.00	\$	65,400
$2 \mathrm{K006.1}$	12	18	331	10.52	8.96	10	\$	200.00	\$	66,200
2 K 007.1	12	18	320	12.03	5.55	9	\$	200.00	\$	64,000
2 K 042.1	12	18	333	9.28	7.29	8	\$	200.00	\$	66,600
1K138.1	12	18	337	8.8	8.66	9	\$	200.00	\$	67,400
2K021.1	12	18	313	8.66	7.37	8	\$	200.00	\$	62,600
2 K 028.1	12	18	180	7.37	8.35	8	\$	200.00	\$	36,000
2 K 029.1	12	18	130	8.35	17.55	13	\$	200.00	\$	26,000
2 K 030.1	12	18	334	17.55	7.21	12	\$	200.00	\$	66,800
2 K 057.1	12	18	327	8.48	10.79	10	\$	200.00	\$	65,400
$2 \mathrm{K058.1}$	12	18	177	10.79	8.85	10	\$	200.00	\$	35,400
2 K 080.1	12	18	329	8.85	8.27	9	\$	200.00	\$	65,800
2 K 078.1	12	18	156	8.27	4.51	6	\$	200.00	\$	31,200
$2 \mathrm{K077.1}$	12	18	335	4.51	15.72	10	\$	200.00	\$	67,000
2 K 076.1	12	18	292	15.72	10.63	13	\$	200.00	\$	58,400
2 K 075.1	18	24	156	10.63	8.08	9	\$	283.00	\$	44,148
2K145.1	18	24	220	8.08	6.08	7	\$	283.00	\$	62,260
2K144.1	18	24	346	6.08	4.03	5	\$	283.00	\$	97,918
$2 K 143.1$	18	24	387	4.03	5.3	5	\$	283.00	\$	109,521
2K142.1	18	24	231	5.3	4.86	5	\$	283.00	\$	65,373

ESTIMATED PIPELINE CONSTRUCTION COST -- BARTON

TRUNK SEWER SYSTEM PROJECT DESCRIPTION	
PROJECT ID:... Barton	
LOCATION:... W 17th St, W 15th St, W 14th St, Maple St	
BRIEF PROJECT DESCRIPTION:...................... 10,600 leet, 15-21 inch pipe	
ESTIMATED COST: \qquad \$ 2,289,448	
ASSUMPTIONS: \qquad (i) New diameter based on pipe replacement	
	(ii) Pipeline costs based on gravity construction in congested urban installations
	(iii) Costs include manholes, surface restoration and incidental costs, assuming no rock excavation
	(iv) Costs are $2001 \$$ and include 25 percent for engineering and contingencies
ALTERNATIVES:...	none

LINK REFERENCE	EXISTING DIAMETER (inches)	NEW DIAMETER (inches)	$\begin{gathered} \text { LENGTH } \\ \text { (feet) } \end{gathered}$	U/S DEPTH (feet)	D/S DEPTH (feet)	AVG. DEPTH (feet)		$\begin{aligned} & \text { T COST } \\ & (\$ / \mathrm{f}) \end{aligned}$	COST	
71007.1	10	15	320	11	4	8	\$	188.00	\$	60,160
71008.1	10	15	29	4	4	4	\$	188.00	\$	5,452
71009.1	10	15	149	4	10	7	\$	188.00	\$	28,012
71039.1	12	18	3	10	10	10	\$	200.00	\$	600
71035.1	12	18	342	10	11	11	\$	200.00	\$	68,400
71156.1	12	18	174	12	15	13	\$	200.00	\$	34,800
71041.1	12	18	315	15	10	12	\$	200.00	\$	63,000
71044.1	12	18	173	10	11	10	\$	200.00	\$	34,600
71045.1	12	18	160	11	9	10	\$	200.00	\$	32,000
71046.1	12	18	150	9	4	7	\$	200.00	\$	30,000
71047.1	12	21	176	4	6	5	\$	221.00	\$	38,896
71048.1	10	21	159	6	6	6	\$	221.00	\$	35,139
71050.1	10	21	323	6	7	6	\$	221.00	\$	71,383
81006.1	10	21	303	7	7	7	\$	221.00	\$	66,963
81170.1	10	21	263	7	4	5	\$	221.00	\$	58,123
81069.1	10	21	145	5	4	5	\$	221.00	\$	32,045
81066.1	10	21	256	5	5	5	\$	221.00	\$	56,576
81176.1	10	21	33	5	5	5	\$	221.00	\$	7,293
81060.1	12	21	360	5	5	5	\$	221.00	\$	79,560
81060.1	12	21	155 154	5	6	5	\$	221.00	\$	34,255
81053.1	10	21	152	5	5 5	5	\$	221.00 221.00	\$	34,034
81080.1	12	21	13	5	4	4	\$	221.00	\$	2,873
81051.1	10	21	133	4	4	4	\$	221.00	\$	29,393
81050.1	10	21	13	5	6	6	\$	221.00	\$	2,873
81049.1	12	21	182	6	7	7	\$	221.00	\$	40,222
81048.1	12	21	196	7	7	7	\$	221.00	\$	43,316
81145.1	12	21	154	7	6	6	\$	221.00	\$	34,034
81047.1	12	21	104	6	7	7	\$	221.00	\$	22,984
81046.1	12	21	298	7	7	7	\$	221.00	\$	65,858
81045.1 81044.1	12	21	32 280	7	7	7	\$	221.00	\$	7,072
81043.1	12	21	386	7	9	8	\$	221.00 221.00	\$	61,880 85
91072.1	12	21	271	9	7	8	\$	221.00	\$	59,891
91071.1	12	21	277	7	9	B	\$	221.00	\$	61,217
91070.1	15	21	130	9	9	9	\$	221.00	\$	28,730
91065.1	15	21	92	9	8	8	\$	221.00	\$	20,332
91064.1	15	21	237	8	12	10	\$	221.00	\$	52,377
9 9 070.1	15	21	289	12	13	12	\$	221.00	\$	63,869
9.069 .1	15	21	113	13	16	15	\$	221.00	\$	24,973
9.068 .1	15	21	235	16	16	16	\$	221.00	\$	51,935
9 J 067.1	15	21	426	16	8	12	\$	221.00	\$	94,146
9 9J066.1	15	21	362	8	15	12	\$	221.00	\$	80,002
9.065 .1	15	21	404	15	17	16	\$	221.00	\$	89,284
9.1064 .1	15	21	432	17	9	13	\$	221.00	\$	95,472
9.058 .1	15	21	297	9	18	13	\$	221.00	\$	65,637
9.1057 .1	15	21	126	23	7	15	\$	221.00	\$	27,846
9.026 .1	15	21	187	7	8	7	\$	221.00	\$	41,327

ESTIMATED PIPELINE CONSTRUCTION COST -- COLEMAN CREEK

| LINK
 REFERENCE | EXISTING
 DIAMETER
 (inches) | NEW DIAMETER
 (inches) | LENGTH
 (feet) | U/S DEPTH
 (feet) | D/S DEPTH
 (feet) | AVG. DEPTH | UNIT COST |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | (feet) | COST |
| :--- |

LINK REFERENCE	EXISting DIAMETER (inches)	NEW DIAMETER (inches)	LENGTH (feet)	U/S DEPTH (feet)	$\begin{gathered} \text { D/S DEPTH } \\ \text { (feet) } \end{gathered}$	$\begin{gathered} \text { AVG. DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	UNIT COST (\$/f)		COST	
4K116.1	10	15	116	8.39	11.05	10	\$	188.00	\$	21,808
4K010.1	10	15	286	11.05	12.7	12	\$	188.00	\$	53,768
4K009.1	10	15	297	12.7	20.84	17	\$	188.00	\$	55,836
4K008. 1	12	15	227	20.84	19.87	20	\$	188.00	\$	42,676
4K007.1	10	15	208	19.87	13	16	\$	188.00	\$	39,104
4K006. 1	10	15	347	13	10.94	12	\$	188.00	\$	65,236
4K005.1	10	15	418	10.95	6.4	9	\$	188.00	\$	78,584
5K001.1	10	15	401	8.41	3.44	6	\$	188.00	\$	75,388
5K002. 1	10	15	389	3.45	3.66	4	\$	188.00	\$	73,132
5K003.1	12	15	319	3.69	14.75	9	\$	188.00	\$	59,972
5L025.1	15	21	156	7.32	7.72	8	\$	221.00	\$	34,476
5L026.1	15	21	339	7.72	5.56	7	\$	221.00	\$	74,919
5L027.1	15	21	401	5.56	7.31	6	\$	221.00	\$	88,621
5L028.1	15	21	7	7.31	7.32	7	\$	221.00	\$	1,547
5G160.1	18	36	189	7.88	6.88	7	\$	381.00	\$	72,009
5G045.1	18	36	63	6.95	6.93	7	\$	381.00	\$	24,003
5G142.1	18	36	158	7.05	5.75	6	\$	381.00	\$	60,198
5G046.1	18	36	184	5.83	6.62	6	\$	381.00	\$	70,104
5G048.1	18	36	125	6.68	6.359	7	\$	381.00	\$	47,625
5G067.1	18	36	150	6.359	6.78	7	\$	381.00	\$	57,150
5G049.1	18	36	192	6.78	7.23	7	\$	381.00	\$	73,152
5G130.1	18	36	87	7.23	6.95	7	\$	381.00	\$	33,147
5G051.1	18	36	102	7.05	9.57	8	\$	381.00	\$	38,862
5G099.1	18	36	171	9.57	6.51	8	\$	381.00	\$	65,151
5G100.1	18	36	64	6.51	6.32	6	\$	381.00	\$	24,384
5G153.1	30	36	371	6.41	8.89	8	\$	381.00	\$	141,351
5G106.1	30	36	126	9.04	10.39	10	\$	381.00	\$	48,006
5G154.1	30	36	138	10.59	11.57	11	\$	381.00	\$	52,578
5G155.1	30	36	238	11.75	8.93	10	\$	381.00	\$	90,678
5G156.1	30	36	266	8.98	8.05	9	\$	381.00	\$	101,346
5G157.1	30	36	145	8.37	9.01	9	\$	381.00	\$	55,245
5G158.1	30	36	216	9.32	8.24	9	\$	381.00	\$	82,296
5H104.1	30	36	82	8.48	8.87	9	\$	381.00	\$	31,242
5H086.1	24	36	204	9.08	7.4	8	\$	381.00	\$	77,724
5H004.1	24	36	400	7.39	7.92	8	\$	381.00	\$	152,400
5H008. 1	24	36	507	8.08	11.06	10	\$	381.00	\$	193,167
5H010.1	24	36	101	10.88	9.7	10	\$	381.00	\$	38,481
5H011.1	24	36	401	9.85	10.75	10	\$	381.00	\$	152,781
5H012.1	21	36	170	11.18	15.28	13	\$	381.00	\$	64,770
5H014.1	21	36	94	15.28	16.944	16	\$	381.00	\$	35,814
5 H 015.1	21	36	103	16.944	17.698	17	\$	381.00	\$	39,243
5H016. 1	21	36	125	17.698	11.83	15	\$	381.00	\$	47,625
5 H 018.1	21	36	171	11.93	10.495	11	\$	381.00	\$	65,151
5H019.1	21	36	223	10.495	9.61	10	\$	381.00	\$	84,963
5H020.1	21	36	247	9.61	12.32	11	\$	381.00	\$	94,107
5H088. 1	21	36	62	12.36	8.63	10	\$	381.00	\$	23,622
51035.1	21	36	57	8.97	7.07	8	\$	381.00	\$	21,717
51033.1	21	36	101	7.04	7.97	8	\$	381.00	\$	38,481
51032.1	21	36	83	8.05	7.19	8	\$	381.00	\$	31,623
51031.1	21	36	246	7.32	7.857	8	\$	381.00	\$	93,726
51030.1	21	36	338	7.857	8.71	8	\$	381.00	\$	128,778
51029.1	21	36	146	8.73	8.23	8	\$	381.00	\$	55,626
51027.1	21	36	197	8.23	9.11	9	\$	381.00	\$	75,057
51026.1	21	36	246	9.11	8.06	9	\$	381.00	\$	93,726
51120.1	21	36	364	8.2	8.84	9	\$	381.00	\$	138,684
51024.1	21	36	87	8.84	9.658	9	\$	381.00	\$	33,147
51105.1	21	36	447	9.658	8.012	9	\$	381.00	\$	170,307
51132.1	21	36	121	8.012	7.46	8	\$	381.00	\$	46,101
51107.1	21	36	46	7.38	7.56	7	\$	381.00	\$	17,526
51104.1	21	36	279	7.56	6.78	7	\$	381.00	\$	106,299
51103.1	21	36	86	6.72	7.72	7	\$	381.00	\$	32,766
5J001.1	21	36	401	7.72	8.76	8	\$	381.00	\$	152,781
5J002.1	21	36	597	8.8	7.36	8	\$	381.00	\$	227,457
5.J003. 1	21	36	255	7.34	9.1	8	\$	381.00	\$	97,155
5.J075.1	24	36	213	9.14	6.61	8	\$	381.00	\$	81,153

ESTIMATED PIPELINE CONSTRUCTION COST -- COUNTRY CLUB

| LINK
 REFERENCE | EXISTING
 DIAMETER
 (inches) | NEW DIAMETER
 (inches) | LENGTH
 (feet) | U/S DEPTH
 (feet) | D/S DEPTH
 (feet) | AVG. DEPTH
 (feet) | UNIT COST |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (\$/lf) | | | | | | | |

Total: \$ 3,205,850

ESTIMATED PIPELINE CONSTRUCTION COST -- DISTRICT 119

| TRUNK SEWER SYSTEM PROJECT DESCRIPTION |
| :--- | :--- |
| PROJECT ID: .. District 119 |

| LINK
 REFERENCE | EXISTING
 DIAMETER
 (inches) | NEW DIAMETER
 (inches) | LENGTH
 (feet) | U/S DEPTH
 (feet) | D/S DEPTH
 (feet) | AVG. DEPTH | UNIT COST |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | (feet) | COST |
| :---: |

ESTIMATED PIPELINE CONSTRUCTION COST -- GRANITE MOUNTAIN

TRUNK SEWER SYSTEM PROJECT DESCRIPTION	
PROJECT ID:.. Granite Mountain	
LOCATION:.. S	Springer Blvd
BRIEF PROJECT DESCRIPTION:...................... 2	. 2900 feet, 18 inch pipe
ESTIMATED COST:..	\$ 571,800
UMPTIONS: \qquad (i) New diameter based on pipe replacement	
	(ii) Pipeline costs based on gravity construction in congested urban installations
	(iii) Costs include manholes, surface restoration and incidental costs, assuming no rock excavation
	(iv) Cosis are $2001 \$$ and include 25 percent for engineering and contingericies
ALTERNATIVES:..	

$\left.\begin{array}{cccccccccc}\begin{array}{c}\text { LINK } \\ \text { REFERENCE }\end{array} & \begin{array}{c}\text { EXISTING } \\ \text { DIAMETER } \\ \text { (inches) }\end{array} & \begin{array}{c}\text { NEW DIAMETER } \\ \text { (inches) }\end{array} & \begin{array}{c}\text { LENGTH } \\ \text { (feet) }\end{array} & \begin{array}{c}\text { U/S DEPTH } \\ \text { (feet) }\end{array} & \begin{array}{c}\text { D/S DEPTH } \\ \text { (feet) }\end{array} & \begin{array}{c}\text { AVG. DEPTH } \\ \text { (feet) }\end{array} & \text { UNIT COST } \\ \text { (} \text { / /If) }\end{array}\right]$

ESTIMATED PIPELINE CONSTRUCTION COST -- District 19

TRUNK SEWER SYSTEM PROJECT DESCRIPTION	
PROJECT ID:... District 19.	
LOCATION:... Near Security Ave, Bolton St	
BRIEF PROJECT DESCRIPTION:....................... 7500 feet, 15 inch pipe	
ESTIMATED COST: \qquad \$ 1,416,204	
ASSUMPTIONS: \qquad (i) New diameter based on pipe replacement	
	(ii) Pipeline costs based on gravity construction in congested urban installations
	(iii) Costs include manholes, surface restoration and incidental costs, assuming no rock excavation
	(iv) Costs are 2001 \$ and include 25 percent for engineering and contingencies
ALTERNATIVES:...	none

| LINK
 REFERENCE | EXISTING
 DIAMETER
 (inches) | NEW DIAMETER
 (inches) | LENGTH
 (feet) | U/S DEPTH
 (feet) | D/S DEPTH
 (feet) | AVG. DEPTH
 (feet) | UNIT COST |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ($\$ / / \mathrm{ff})$ | | | | | | | |

ESTIMATED PIPELINE CONSTRUCTION COST -- JIMERSON CREEK

TRUNK SEWER SYSTEM PROJECT DESCRIPTION	
PROJECT ID:... Jimerson Creek	
LOCATION:	Near Foxcroft Rd, Tallyho Ln, Youngblood Rd, Pine Valley Rc
BRIEF PROJECT DESCRIPTION:.......................	11,500 feet, 15-36 inch pipe
ESTIMATED COST:..	\$ 3,064,014
ASSUMPTIONS:...	(i) New diameter based on pipe replacement
	(ii) Pipeline costs based on gravity conslruction in congested urban installations
	(iii) Costs include manholes, surface restoration and incidental cosls, assuming no rock excavation
	(iv) Costs are $2001 \$$ and include 25 percent for engineering and contingencies
ALTERNATIVES: ..	none

LINK REFERENCE	EXISTING DIAMETER (inches)	NEW DIAMETER (inches)	LENGTH (feet)	U/S DEPTH (feet)	$\begin{gathered} \text { D/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	AVG. DEPTH (feet)	UNIT COST (\$/If)		COST	
3D118.1	10	15	251	7.02	2.67	5	\$	188.00	\$	47,188
3D119.1	10	15	242	4.64	6.68	6	\$	188.00	\$	45,496
3D120.1	10	15	206	6.8	3.14	5	\$	188.00	\$	38,728
3 D 066.1	10	15	368	5.43	4.53	5	\$	188.00	\$	69,184
3 0 06.1	10	15	185	5.48	6.9	6	\$	188.00	\$	34,780
3D064.1	10	15	215	6.99	4.8	6	\$	188.00	\$	40,420
3D108.1	10	15	400	4.74	3.84	4	\$	188.00	\$	75,200
3D109.1	10	15	371	3.83	2.8	3	\$	188.00	\$	69,748
3D110.1	10	15	438	2.87	3.58	3	\$	188.00	\$	82,344
3D111.1	12	18	227	3.58	5.44	5	\$	200.00	\$	45,400
3 D 113.1	16	21	127	5.42	6.89	6	\$	221.00	\$	28,067
3D114.1	16	21	130	7.55	6.03	7	\$	221.00	\$	28,730
$3 \mathrm{C096.1}$	16	21	213	5.95	4.72	5	\$	221.00	\$	47,073
3C095.1	16	21	76	7.71	7.16	7	\$	221.00	\$	16,796
$3 \mathrm{C097.1}$	16	21	145	7.24	6.08	7	\$	221.00	\$	32,045
3C098.1	16	21	30	6.08	4.58	5	\$	221.00	\$	6,630
$3 \mathrm{C103.1}$	16	21	190	4.7	4.6	5	\$	221.00	\$	41,990
3C104.1	16	21	97	4.71	4.09	4	\$	221.00	\$	21,437
3C105.1	16	21	380	5.68	4.12	5	\$	221.00	\$	83,980
3 C 124.1	16	21	73	4.21	3.11	4	\$	221.00	\$	16,133
3 C 123.1	16	21	83	4.96	5.79	5	\$	221.00	\$	18,343
3C122.1	16	21	86	5.9	7.29	7	\$	221.00	\$	19,006
3C159.1	16	21	120	7.29	11.91	10	\$	221.00	\$	26,520
3C136.1	16	21	69	12.13	6.35	9	\$	221.00	\$	15,249
3C137:1	$\therefore 16$	21	82	12.51	6.92	10	\$	221.00	\$	18,122
3C138.1	16	21	93	7	5.93	6	\$	221.00	\$	20,553
3C139.1	18	24	371	6.37	7.28	7	\$	283.00	\$	104,993
2C113.1	18	24	255	7.41	4.51	6	\$	283.00	\$	72,165
$2 \mathrm{C112.1}$	18	24	104	4.55	4.63	5	\$	283.00	\$	29,432
2C111.1	18	24	236	4.74	4.63	5	\$	283.00	\$	66,788
2C110.1	18	24	119	4.66	5.26	5	\$	283.00	\$	33,677
2C114.1	18	24	184	5.26	4.63	5	\$	283.00	\$	52,072
2C115.1	18	24	222	4.91	5.09	5	\$	283.00	\$	62,826
2C120.1	18	24	192	5.23	6.26	6	\$	283.00	\$	54,336
2 C 121.1	18	24	206	6.28	5.14	6	\$	283.00	\$	58,298
2C127.1	18	24	328	5.86	5.38	6	\$	283.00	\$	92,824
2C128.1	18	24	89	5.57	5.17	5	\$	283.00	\$	25,187
2C129.1	18	24	314	6.12	5.8	6	\$	283.00	\$	88,862
$2 \mathrm{C006.1}$	18	24	312	5.78	4.68	5	\$	283.00	\$	88,296
$2 \mathrm{C005.1}$	18	24	391	4.73	4.78	5	\$	283.00	\$	110,653
$2 \mathrm{C001.1}$	18	24	199	4.73	4.61	5	\$	283.00	\$	56,317
$1 \mathrm{B023.1}$	18	24	216	4.45	4.49	4	\$	283.00	\$	61,128
1 B021.1	18	24	83	5.55	3.96	5	\$	283.00	\$	23,489
18020.1	18	24	104	3.95	6.17	5	\$	283.00	\$	29,432
18078.1	18	24	95	6.17	4.68	5	\$	283.00	\$	26,885
1B019.1	18	24	282	5.95	5.39	6	\$	283.00	\$	79,806
18018.1	18	24	193	5.5	5.81	6	\$	283.00	\$	54,619

ESTIMATED PIPELINE CONSTRUCTION COST -- MAUMELLE

TRUNK SEWER SYSTEM PROJECT DESCRIPTION PROJECT ID: \qquad Maumelle	
LOCATION:	Near Hinson Rd, Jennifer Dr
BRIEF PROJECT DESCRIPTION:......	24,500 feet, 15-36 inch pipe
ESTIMATED COST:.......................................	\$ 6,536,535
ASSUMPTIONS:..	(i) New diameter based on pipe replacement
	(ii) Pipeline costs based on gravity construction in congested urban installations
	(iii) Costs include manholes, surface restoration and incidental costs, assuming no rock excavation
	(iv) Costs are 2001 \$ and include 25 percent for engineering and contingencies
ALTERNATIVES:..	Significant infiltration and inflow reduction in Upper Hinson aree

LINK REFERENCE	EXISTING DIAMETER (inches)	NEW DIAMETER (inches)	$\begin{gathered} \text { LENGTH } \\ \text { (feet) } \\ \hline \end{gathered}$	$\begin{gathered} \text { U/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	$\begin{gathered} \text { D/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	AVG. DEPTH (feet)	UNIT COST (\$//f)		cost	
-4E002.1	10	15	259	6.171	6.949	7	\$	188.00	\$	48,692
$-5 \mathrm{C} 136.1$	10	15	269	4.97	4.071	5	\$	188.00	\$	50,572
-5C068.1	10	15	361	5.01	8.068	7	\$	188.00	\$	67,868
-5C069.1	10	15	253	8.068	8.771	8	\$	188.00	\$	47,564
-5C130.1	10	15	108	8.771	5.659	7	\$	188.00	\$	20,304
-5C074.1	10	15	404	5.659	6.25	6	\$	188.00	\$	75,952
-5C075.1	10	15	161	6.25	5.409	6	\$	188.00	\$	30,268
-5C076.1	12	15	194	5.409	5.058	5	\$	188.00	\$	36,472
-4E035.1	10	15	308	7.259	8.35	8	\$	188.00	\$	57,904
-4E037.1	10	15	440	8.35	6.949	8	\$	188.00	\$	82,720
-4E001.1	10	15	200	7.061	8.34	8	\$	188.00	\$	37,600
-5D021.1	10	15	123	8.442	7.65	8	\$	188.00	\$	23,124
-5D018.1	10	15	163	7.65	7.251	7	\$	188.00	\$	30,644
-5D017.1	10	15	39	7.251	7.809	8	\$	188.00	\$	7,332
-5D079.1	10	15	59	7.871	9.14	9	\$	188.00	\$	11,092
-5D016.1	10	15	224	9.14	6.41	8	\$	188.00	\$	42,112
-5D117.1	10	15	105	6.41	5.139	6	\$	188.00	\$	19,740
-5D015.1	10	15	56	7.18	9.38	8	\$	188.00	\$	10,528
-5D115.1	10	15	164	9.38	8.791	9	\$	188.00	\$	30,832
-5D014.1	10	15	203	8.791	11.131	10	\$	188.00	\$	38,164
-5D013.1	10	18	56	11.131	7.97	10	\$	200.00	\$	11,200
-5D061.1	10	18	243	7.97	7.66	8	\$	200.00.	\$	48,600
-5D012.1	10	18	151	7.709	9.068	8	\$	200.00	\$	30,200
-5D085.1	10	18	194	9.068	- 12.8	11	\$	200.00	\$	38,800
-5D011.1	10	18	174	12.98	6.458	10	\$	200.00	\$	34,800
-5D010.1	10	18	128	6.458	7.768	7	\$	200.00	\$	25,600
-5D009.1	10	18	220	7.768	6.928	7	\$	200.00	\$	44,000
-5D008.1	10	18	404	7.909	6.469	7	\$	200.00	\$	80,800
-5D007.1	10	18	269	6.538	4.579	6	\$	200.00	\$	53,800
-5D006.1	10	18	249	4.668	6.49	6	\$	200.00	\$	49,800
-5D005.1	10	18	210	6.588	9.339	8	\$	200.00	\$	42,000
-5D004.1	10	18	423	9.608	4.458	7	\$	200.00	\$	84,600
-5C096.1	12	18	279	5.058	4.407	5	\$	200.00	\$	55,800
-5C095.1	12	18	72	4.407	7.096	6	\$	200.00	\$	14,400
-5C094.1	12	18	390	7.149	8.637	8	\$	200.00	\$	78,000
-5C093.1	12	18	92	8.657	3.028	6	\$	200.00	\$	18,400
-5C092.1	12	18	200	3.068	7.076	5	\$	200.00	\$	40,000
-5C109.1	12	18	112	7.076	5.667	6	\$	200.00	\$	22,400
-5C110.1	12	18	75	5.907	5.417	6	\$	200.00	\$	15,000
-5C111.1	12	18	174	5.417	6.217	6	\$	200.00	\$	34,800
-5C113.1	12	18	36	6.466	6.978	7	\$	200.00	\$	7,200
-5C114.1	12	18	207	6.978	8.247	8	\$	200.00	\$	41,400
-5C116.1	12	18	397	8.506	7.147	8	\$	200.00	\$	79,400
-5C030.1	15	18	197	7.147	5.127	6	\$	200.00	\$	39,400
-5C029.1	15	18	256	5.127	8.996	7	\$	200.00	\$	51,200
-5C026.1	20	27	121	9.596	9.168	9	\$	302.00	\$	36,542

LINK REFERENCE	EXISTING DIAMETER (inches)	NEW DIAMETER (inches)	LENGTH (feet)	$\begin{gathered} \text { U/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { D/S DEPTH } \\ & \text { (feet) } \end{aligned}$	AVG. DEPTH (feet)		$\begin{aligned} & \mathrm{T} \text { COST } \\ & \text { (S/ff) } \end{aligned}$		COST
-5C028.1	20	27	184	9.177	8.626	9	\$	302.00	\$	55,568
-6C033.1	20	27	338	8.835	8.496	9	\$	302.00	\$	102,076
-6C029.1	20	27	279	8.565	9.735	9	\$	302.00	\$	84,258
-6C028.1	20	27	217	9.896	14.167	12	\$	302.00	\$	65,534
-6B012.1	20	27	335	14.285	9.156	12	\$	302.00	\$	101,170
-68009.1	20	27	328	9.205	7.477		\$	302.00	\$	99,056
-6B008.1	20	27	141	7.506	8.827	8	\$	302.00	\$	42,582
-6B007.1	20	27	367	8.876	8.716	9	\$	302.00	\$	110,834
-6B006.1	20	27	95	8.995	10.517	10	\$	302.00	\$	28,690
-6B005.1	20	27	69	10.585	9.71	10	\$	302.00	\$	20,838
-6B140.1	20	27	49	9.71	7.9	9	\$	302.00	\$	14,798
-6B139.1	20	27	76	7.9	7.182	8	\$	302.00	\$	22,952
-6B138.1	20	27	38	7.182	10.324	9	\$	302.00	\$	11,476
-6B137.1	20	27	292	10.324	9.234	10	\$	302.00	\$	88,184
-6B003.1	20	27	318	9.306	7.565	8	\$	302.00	\$	96,036
-6B002.1	20	27	56	7.614	7.906	8	\$	302.00	\$	16,912
-6B080.1	20	27	266	7.906	9.366	9	\$	302.00	\$	80,332
-6B001.1	20	27	49	9.366	9.435	9	\$	302.00	\$	14,798
-7B011.1	20	27	118	9.563	8.616	9	\$	302.00	\$	35,636
-78010.1	20	27	154	8. 964	11.574	10	\$	302.00	\$	46,508
-78009.1	20	27	292	11.856	11.593	12	\$	302.00	\$	88,184
-7B008.1	20	27	141	11.603	12.605	12	\$	302.00	\$	42,582
-78061.1	21	27	236	12.786	15.583	14	\$	302.00	\$	71,272
-78060.1	21	27	66	15.685	13.283	14	\$	302.00	\$	19,932
-78059.1	21	27	59	13.614	15.165	14	\$	302.00	\$	17,818
-78043.1	21	27	374	15.454	13.864	15	\$	302.00	\$	112,948
-78044.1	21	27	269	14.114	13.826	14	\$	302.00	\$	81,238
-7A028.1	21	27	384	14.003	12.625	13	\$	302.00	\$	115,968
-7A029.1	21	27	397	12.795	12.765	13	\$	302.00	\$	119,894
-7A030.1	21	27	253	13.024	13.435	13	\$	302.00	\$	76,406
-7A031.1	21	27	364	13.514	12.585	13	\$	302.00	\$	109,928
-7A032.1	21	27	157	12.864	12.025	12	\$	302.00	\$	47,414
-7A033.1	21	27	390	12.334	13.302	13	\$	302.00	\$	117,780
-7A034.1	21	27	276	13.433	15.913	15	\$	302.00	\$	83,352
-7A035.1	21	27	256	16.034	13.472	15	\$	302.00	\$	77,312
-8A011.1	21	27	62	13.472	13.764	14	\$	302.00	\$	18,724
-8A001. 1	21	27	30	13.793	13.954	14	\$	302.00	\$	9,060
-8A020.1	21	27	220	13.954	13.093	14	\$	302.00	\$	66,440
-8A002.1	21	27	354	13.264	14.332	14	\$	302.00	\$	106,908
-8A003.1	21	27	341	14.584	13.442	14	\$	302.00	\$	102,982
$-8 A 004.1$	21	27	207	13.574	13.204	13	\$	302.00	\$	62,514
-8A005.1	21	27	276	13.433	13.093	13	\$	302.00	\$	83,352
-8A006. 1	21	27	115	13.234	12.982	13	\$	302.00	\$	34,730
-8A007.1	21	27	66	13.392	12.302	13	\$	302.00	\$	19,932
-8A027.1	21	27	331	12.302	14.582	13	\$	302.00	\$	99,962
-8A008. 1	21	27	203	14.982	14.252	15	\$	302.00	\$	61,306
-8A009.1	21	27	174	14.383	12.422	13	\$	302.00	\$	52,548
-8A081.1	21	27	115	12.422	13.203	13	\$	302.00	\$	34,730
-8A010.1	21	27	141	13.291	14.403	14	\$	302.00	\$	42,582
-8-A001. 1	21	27	108	14.502	13.883	14	\$	302.00	\$	32,616
-8-A002. 1	21	27	148	13.923	12.423	13	\$	302.00	\$	44,696
-8-A003.1	21	27	400	12.623	11.952	12	\$	302.00	\$	120,800
-8-A004.1	21	27	28	12.054	12.191	12	\$	302.00	\$	8,456
-8-A016.1	21	27	395	12.191	11.851	12	\$	302.00	\$	119,290
-8-A005. 1	21	27	256	11.952	11.122	12	\$	302.00	\$	77,312
-8-A012.1	21	27	52	11.122	11.912	12	\$	302.00	\$	15,704
-8-A006. 1	21	27	180	11.912	14.333	13	\$	302.00	\$	54,360
-8-A007. 1	21	27	157	14.451	15.061	15	\$	302.00	\$	47,414
-8-A008. 1	21	27	285	15.192	25.013	20	\$	302.00	\$	86,070
-8-A009.1	21	27	266	25.112	20.49	23	\$	302.00	\$	80,332
-8-A010.1 $-8-$ A011.1	21	27 27	194 351	20.69	18.103	19	\$	302.00	\$	58,588
-8-A011.1	21 24	27 36	351 +54	18.201	17.522	18	\$	302.00	\$	106,002
-8-8001.1	24 24	36	154	17.702	15.231	16	\$	381.00	\$	58,674
-8-8-000. 1	24	36 36	367 282	15.783 18.201	17.902	17	\$	381.00	\$	139,827
-8-8004.1	24	36	394	18.201 20.73	20.582 24.193	19 22	\$	381.00 381.00	\$	107,442 150,114
-8-B012.1	24	36	394	24.452	24.411	24	\$	381.00	\$	150,114

| LINK
 REFERENCE | EXISTING
 DIAMETER
 (inches) | NEW DIAMETER
 (inches) | LENGTH
 (feet) | U/S DEPTH
 (feet) | D/S DEPTH
 (feet) | AVG. DEPTH
 (feet) | UNIT COST
 (($/$ /f) | COST |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

ESTIMATED PIPELINE CONSTRUCTION COST -- ROCK CREEK

TRUNK SEWER SYSTEM PROJECT DESCRIPTION	
ROJECT ID:.. Rock Creek	
LOCATION	Rooney Parham Rd, Cunningham Lake Rd, Barrow Rd, Serenit Dr, Grassy Flat Creek
BRIEF PROJECT	. 57,800 feet, 21-60 inch pipe
ESTIMATED CO	\$ 23,644,942
ASSUMPTIONS:	(i) New diameter based on pipe replacement, assumes some parallel pipe replacement
	(ii) Pipeline costs based on gravity construction in congested urban installations
	(iii) Costs include manholes, surface restoration and incidental costs, assuming no rock excavation
	(iv) Costs are $2001 \$$ and include 25 percent for engineering and contingencies
ALTERNATIVES:	Replace parallel pipes with single, larger pipe

LINK REFERENCE	EXISTING DIAMETER (inches)	NEW DIAMETER (inches)	$\begin{gathered} \text { LENGTH } \\ \text { (feet) } \\ \hline \end{gathered}$	$\begin{gathered} \text { U/S DEPTH } \\ \text { (feet) } \end{gathered}$	$\begin{gathered} \text { D/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	AVG. DEPTH (feet)	UNIT COST (\$/f)		COST	
-2D011.1	15	21	18	13.12	13.78	13	\$	221.00	\$	3,978
-2D012.1	18	21	60	13.9	7.5	11	\$	221.00	\$	13,260
-2E001.1	18	21	82	7.81	7.52	8	\$	221.00	\$	18,122
-2E002.1	18	21	244	7.52	3.39	5	\$	221.00	\$	53,924
-2E003.1	18	21	65	3.39	8.11	6	\$	221.00	\$	14,365
-3E025.1	18	21	292	8.53	3.31	6	\$	221.00	\$	64,532
-2E029.1	18	21	575	3.31	4.28	4	\$	221.00	\$	127,075
-2E033.1	18	24	182	4.28	9.3	7	\$	283.00	\$	51,506
-2E035.1	18	24	72	9.8	11.3	11	\$	283.00	\$	20,376
-2E036.1	18	24	267	11.3	8.97	10	\$	283.00	\$	75,561
-2E037.1	18	24	410	8.97	10.77	10	\$	283.00	\$	116,030
-2E038.1	18	24	356	10.77	13.26	12	\$	283.00	\$	100,748
-2E039.1	18	24	46	13.26	12.25	13	\$	283.00	\$	13,018
-2E094.1	18	24	130	12.25 12.48	12.48	12	\$	283.00	\$	99,050
-2E040.1	18	24	111	13.31	11.63	13	\$	283.00	\$	36,790
-2E041.1	18	24	144	11.63	11.85	12	\$	283.00	\$	40,752
-2F031.1	18	24	334	11.85	12.85	12	\$	283.00	\$	94,522
-2F030.1	18	24	353	12.85	14.92	14	\$	283.00	\$	99,899
-2F038.1	18	24	388	14.92	10.42	13	\$	283.00	\$	109,804
-2F036.1	18	24	382	10.42	10.55	10	\$	283.00	\$	108,106
-2E006.1	15	21	230	10.56	8.5	10	\$	221.00	\$	
-2E007.1	15	21	- 70	8.5	9	9	\$	221.00	\$	15,470
-2E008.1	15	21	150	9	8.91	9	\$	221.00	\$	33,150
-2E009.1	15	21	430	8.91	6.2	8	\$	221.00	\$	95,030
-2E010.1	15	21	260	6.32	7.1	7	\$	221.00	\$	57,460
-2E012.1	15	21	215	7.1	6.96	7	\$	221.00	\$	47,515
-2E013.1	15	21	135	6.96	7.5	7	\$	221.00	\$	29,835
-2E107.1	15	21	118	7.73	6.202	7	\$	221.00	\$	26,078
-2E014.1	15	21	220	6.202	7.63	7	\$	221.00	\$	48,620
-2E015.1	15	21	292	7.63	6.8	7	\$	221.00	\$	64,532
-2E016.1	15	21	306	6.97	9.7	8	\$	221.00	\$	67,626
-2F024.1	15	21	337	9.89	9.74	10	\$	221.00	\$	74,477
-2F023.1	15	21	327	9.74	7.4	9	\$	221.00	\$	72,267
-2F039.1	15	21	387 389	7.52	7	7	\$	221.00	\$	85,527
-2F035.1	15	21	474	8	6.5	7	\$	221.00	\$	85,969
				6.7	6.5	7	\$	221.00	\$	104,754
-1F014.1	24	30	55	6.73	8.5	8	\$	320.00	\$	17,600
-1F013.1	24	30	230	8.5	9.29	9	\$	320.00	\$	73,600
-1F012.1	24	30	405	9.29	6.81	8	\$	320.00	\$	129,600
-1F051.1	24	30	211	6.81	13.07	10	\$	320.00	\$	67,520
-1F046.1	24	30	17	13.57	14.39	14	\$	320.00	\$	5,440
-1 F047.1	24	30	226	14.39	10.95	13	\$	320.00	\$	72,320
-1F044.1	24	30	339	10.95	10.48	11	\$	320.00	\$	108,480

LINK REFERENCE	EXISTING DIAMETER (inches)	NEW DIAMETER (inches)	LENGTH (feet)	$\begin{aligned} & \text { U/S DEPTH } \\ & \text { (feet) } \end{aligned}$	$\begin{gathered} \text { D/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { AVG. DEPTH } \\ & \text { (feet) } \end{aligned}$		$\begin{aligned} & \text { IT COST } \\ & \text { (S/fif) } \end{aligned}$	COST	
-1E046.1	24	30	266	10.48	9.29	10	\$	320.00	\$	85,120
-1F086.1	24	30	258	9.29	10.32	10	\$	320.00	\$	82,560
OF001.1	24	30	319	10.32	10.1	10	\$	320.00	\$	102,080
OF002. 1	24	36	160	10.1	9.82	10	\$	381.00	\$	60,960
OF003.1	24	36	218	9.82	12.87	11	\$	381.00	\$	83,058
OF004.1	24	36	99	12.87	8.75	11	\$	381.00	\$	37,719
OF005.1	24	36	477	8.75	14.99	12	\$	381.00	\$	181,737
OF026.1	24	36	346	14.99	11.8	13	\$	381.00	\$	131,826
OF137.1	24	36	216	11.8	11.2	12	\$	381.00	\$	82,296
0 F 135.1	24	36	310	11.45	9.4	10	\$	381.00	\$	118,110
OF136.1	24	36	328	9.4	9.29	9	\$	381.00	\$	124,968
OE080.1	24	36	308	9.29	9.53	9	\$	381.00	\$	117,348
0E079.1	24	36	347	9.53	10.01	10	\$	381.00	\$	132,207
OE078.1	24	36	272	10.11	12.04	11	\$	381.00	\$	103,632
0E168.1	24	36	177	12.14	16.26	14	\$	381.00	\$	-67,437
OE169.1	24	36	235	16.31	11.26	14	\$	381.00	\$	89,535
1 Ei40.	24	36	24	11.29	16.02	14	\$	381.00	\$	9,144
1 E116.1	24	36	223	16.12	12.12	14	\$	381.00	\$	84,963
1E115.i	24	36	78	12.22	12.1	12	\$	381.00	\$	29,718
1 E114.1	30	36	483	12.48	10.33	11	\$	381.00	\$	184,023
1 E113.1	30	36	479	10.36	6.6	8	\$	381.00	\$	182,499
1 E112.1	30	36	319	7.6	12.79	10	\$	381.00	\$	121,539
1 E111.1	30	36	131	13.02	19.1	16	\$	381.00	\$	49,911
1 F049.1	30	36	330	19.15	15.6	17	\$	381.00	\$	125,730
1 F048.1	30	36	251	15.62	16.81	16	\$	381.00	\$	-95,631
1 F047.1	30	36	319	16.82	12.15	14	\$	381.00	\$	121,539
1 F046.1	30	36	405	14.32	9.48	12	\$	381.00	\$	154,305
1 F044.1	30	36	87	9.48	10.44	+0	\$	381.00	\$	-33,147
1F129.1	30	36	121	10.44	11.09	11	\$	381.00	\$	46,101
1 F043.1	30	36	241	11.1	9.85	10	\$	381.00	\$	91,821
1 F041.1	30	36	411	11.9	11.38	12	\$	381.00	\$	156,591
1 F040.1	30	36	146	11.4	13.02	12	\$	381.00	\$	55,626
1 F039.1	30	36	486	13.06	14.47	14	\$	381.00	\$	185,166
1G068. 1	30	36	371	14.5	13.58	14	\$	381.00	\$	141,351
1G065.1	30	42	343	13.6	12.8	13	\$	414.00	\$	142,002
1G064.1	30 30	42	348	12.87	15	14	\$	414.00	\$	144,072
1G019.1	30	42	90	15.06	15.65	15	\$	414.00	\$	37,260
1G149.1	30	42	120	15.65	16.6	16	\$	414.00	\$	49,680
1G017.1	30	42	70	16.65	14.62	16	\$	414.00	\$	28,980
1G014.1	30	42	451	14.68	17.19	16	\$	414.00	\$	186,714
$1 \mathrm{G012.1}$	30	42	183	17.21	13.61	15	\$	414.00	\$	75,762
1G009.1	30	42	167	13.65	10.88	12	\$	414.00	\$	69,138
-1F014.2	8	24	51	6.7	8.7	8	\$	283.00	\$	14,433
-1F039.1	15	24	313	8.81	7.69	8	\$	283.00	\$	88,579
-1F040.1	15	24	303	7.69	7	7	\$	283.00	\$	85,749
-1F041.1	15	24	246	7.18	10.96	9	\$	283.00	\$	69,618
-1F042.1	15	24	140	10.96	9	10	\$	283.00	\$	39,620
-1F043.1	15	24	171	9.13	8	9	\$	283.00	\$	48,393
-t F054.1	15 15	24	240	8	8.6	8	\$	283.00	\$	67,920
-1F055.1	15	24	299	8.6	7.5	8	\$	283.00	\$	84,617
-t F071.1	15	24	75	7.5	8.4	8	\$	283.00	\$	21,225
-1F072.1	15	36	126	8.56	6.17	7	\$	381.00	\$	48,006
-1F073.1	15	36	100	6.17	5	6	\$	381.00	\$	38,100
-1F074.1	15	36	100	5	7.12	6	\$	381.00	\$	38,100
OF139.1	15	36	245	7.13	7.8	7	\$	381.00		93,345
OF140.1	15	36 36	324	7.94	9.5	9	\$	381.00	\$	123,444
OF011.1	15	36	70	9.64	11.49	11	\$	381.00	\$	26,670
0F012.1 OF013.1	15 15	36 36	210	11.49	6.6	9	\$	381.00	\$	80,010
OF014.1	15	36 36	282	6.61 6.69	6.5 7.65	7	\$	381.00 381.00	\$	102,108 107,442
OF015.1	15	36	50	7.65	7.91	8	\$	381.00	\$	19,050
$0 \mathrm{F018.1}$	15	36	283	7.91	8.38	8	\$	381.00	-	107,823
0 O019.1	15	36	70	8.38	7.75	8	\$	381.00	\$	26,670
$0 \mathrm{FO20.1}$	18	36	67	8.11	8.03	8	\$	381.00	\$	25,527
OF145.1	18	36	281	8.03	6	7	\$	381.00	\$	107,061
0E069.1	18	36	250	6	9.5	8	\$	381.00	\$	95,250

LINK REFERENCE	EXISting DIAMETER (inches)	NEW DIAMETER (inches)	LENGTH (feet)	$\begin{gathered} \text { U/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	$\begin{gathered} \text { D/S DEPTH } \\ \text { (feet) } \end{gathered}$	AVG. DEPTH (feet)		IT COST (S/f)		COST
0E070.1	18	36	250	9.63	8.1	9	\$	381.00	\$	95,250
OE071.1	18	36	293	8.1	12.8	10	\$	381.00	\$	111,633
OE072.1	18	36	137	13	8	11	\$	381.00	\$	52,197
0E073.1	18	36	170	8	7.73	8	\$	381.00	\$	64,770
OE074.1	18	36	268	7.73	9.3	9	\$	381.00	\$	102,108
OE076.1	18	36	45	9.45	12.7	11	\$	381.00	\$	17,145
1 E117.1	18	36	339	12.7	8.6	11	\$	381.00	\$	129,159
1 E118.1	18	36	96	8.74	8.15	8	\$	381.00	\$	36,576
1 E 149.1	18	36	129	8.15	8.2	8	\$	381.00	\$	49,149
1 E 119.1	18	36	261	8.26	5.8	7	\$	381.00	\$	99,441
1E120.1	18	36	103	5.86	6.28	6	\$	381.00	\$	39,243
1 E 121.1	18	36	276	6.28	6.9	7	\$	381.00	\$	105,156
1 E122.1	18	36	285	6.97	6.62	7	\$	381.00	\$	108,585
1E123.1	18	36	150	6.62	9.7	8	\$	381.00	\$	57,150
1 E 124.1	18	36	164	9.71	8.87	9	\$	381.00	\$	62,484
1 E125.1	18	36	166	8.97	10.9	10	\$	381.00	\$	63,246
1 F008. 1	18	36	251	10.99	7.49	9	\$	381.00	\$	95,631
1 F007.1	18	36	46	7.5	7.7	8	\$	381.00	\$	17,526
1 F006.1	18	36	280	7.7	11.8	10	\$	381.00	\$	106,680
1 F009.1	21	36	324	12.36	5.41	9	\$	381.00	\$	123,444
1 F010.1	21	36	414	5.57	9.4	7	\$	381.00	\$	157,734
1 F011.1	21	36	428	9.58	12.74	11	\$	381.00	\$	163,068
$1 F 042.1$	21	36	22	12.87	8.586	11	\$	381.00	\$	8,382
1 F028.1	21	36	362	8.586	6.41	7	\$	381.00	\$	137,922
1 F029.1	21	36	146	6.6	9.68	8	\$	381.00	\$	55,626
1 F030.1	21	36	357	9.68	9.25	9	\$	381.00	\$	136,017
1 F031.1	21	36	157	9.32	5.44	7	\$	381.00	\$	59,817
1 F032.1	21	36	175	5.45	8.65	7	\$	381.00	\$	66,675
1G091.1	18	36	186	9	9.45	9	\$	381.00	\$	70,866
1G090. 1	18	36	305	9.45	8.82	9	\$	381.00	\$	116,205
1 G089.1	18	36	215	8.82	8.08	8	\$	381.00	\$	81,915
1 G088.1	18	36	201	8.08	7.32	8	\$	381.00	\$	76,581
1G087.1	18	36	278	7.32	6.65	7	\$	381.00	\$	105,918
1 G086.1	18	36	50	6.65	7.11	7	\$	381.00	\$	19,050
1G074.1	21	36	529	10.91	13.2	12	\$	381.00	\$	201,549
1G016.1	24	36	111	13.2	9.85	12	\$	381.00	\$	42,291
$1 \mathrm{G015.1}$	24	36	296	10.03	7.57	9	\$	381.00	\$	112,776
1G013.1	24	36	300	7.65	7.26	7	\$	381.00	\$	114,300
1G011.1	24	36	164	7.27	5.2	6	\$	381.00	\$	62,484
1 G010.1	24	36	287	5.45	6.54	6	\$	381.00		109,347
1G006. 1	24	36	352	6.56	6.96	7	\$	381.00	\$	134,112
1 G005.1	24	36	71	6.98	7.35	7	\$	381.00	\$	27,051
1G002. 1	24	36	265	7.39	5.24	6	\$	381.00	\$	100,965
1 G001.1	24	36	167	5.26	6.09	6	\$	381.00	\$	63,627
2 H 031.1	24	36	450	6.14	11.08		\$	381.00	\$	171,450
2 H 030.1	24	36	345	11.08	12.78	12	\$	381.00	\$	131,445
2 H 029.1	24	36	347	12.78	12.12	12	\$	381.00	\$	132,207
2 H 028.1	24	36	8	12.15	12.38	12	\$	381.00	\$	3,048
2 H 027.1	24	36	138	13.04	12.08	13	\$	381.00	\$	52,578
2 H 026.1	24	36	279	12.38	11.72	12	\$	381.00	\$	106,299
2 H 025.1	24	36	47	11.83	11.72	12	\$	381.00	\$	17,907
2 H 024.1	30	36	58	11.81	10.8	11	\$	381.00	\$	22,098
2 H 023.1	30	36	228	10.8	7.5	9	\$	381.00	\$	86,868
2 H 022.1	30	36	155	7.5	7.5	8	\$	381.00	\$	59,055
2 H 021.1	30	36	55	7.5	10.21	9	\$	381.00	\$	20,955
2 H 020.1	30	36	234	10.21	11	11	\$	381.00	\$	89,154
2 H 019.1	30	36	250	11	5.6	8	\$	381.00	\$	95,250
$2 \mathrm{H018.1}$	30	36	475	5.6	7.23	6	\$	381.00	\$	180,975
2H017.1	30 30	36 36	350 200	7.23	8.08	8	\$	381.00	\$	133,350
$2 H 016.1$ 2 H 015.1	30 24	36 36	200	8.08 8.79	8.65 8.43	8	\$	381.00 381.00	\$	76,200
3H094. 1	24	36	295	8.43	9.4	9	\$	381.00 381.00	\$	180,213 112,395
3 H 068.1	24	36	250	9.4	10.57	10	\$	381.00	\$	-95,250
3 H 081.1	24	36	300	10.57	12	11	\$	381.00	\$	114,300
3 H 069.1	24	36	200	12	7.9	10	\$	381.00	\$	76,200
3 H 070.1	24	36	30	7.9	10.17	9	\$	381.00	\$	11,430
3 H 074.2	24	36	375	10.53	11.4	11	\$	381.00	\$	142,875

LINK REFERENCE	$\begin{aligned} & \text { EXISTING } \\ & \text { DIAMETER } \\ & \text { (inches) } \end{aligned}$	NEW DIAMETER (inches)	LENGTH (feet)	$\begin{gathered} \text { U/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	$\begin{gathered} \text { D/S DEPTH } \\ \text { (feet) } \\ \hline \end{gathered}$	AVG. DEPTH (feet)		$\begin{aligned} & \text { T COST } \\ & (\$ / I f) \end{aligned}$		ST
3H076.1	24	36	179	11.4	11.98	12	\$	381.00	\$	68,199
3H078. 1	24	36	233	11.98	11.8	12	\$	381.00	\$	88,773
3H079.1	24	36	336	11.8	12.8	12	\$	381.00	\$	128,016
31025.1	24	36	318	12.8	9.11	11	\$	381.00	\$	121,158
31028.1	24	36	318	9.11	8.24	9	\$	381.00	\$	121,158
31027.1	24	36	201	8.24	14.68	11	\$	381.00	\$	76,581
31035.1	24	36	52	14.78	14.96	15	\$	381.00	\$	19,812
31034.1	24	36	112	14.96	14.64	15	\$	381.00	\$	42,672
31033.1	24	36	170	14.82	5.64	10	\$	381.00	\$	64,770
31022.1	24	36	138	5.64	11.3	8	\$	381.00	\$	52,578
31021.1	24	36	125	11.3	11.57	11	\$	381.00	\$	47,625
31020.1	24	36	65	11.57	10.8	11	\$	381.00	\$	24,765
31019.1	24	36	334	10.8	8.97	10	\$	381.00	\$	127,254
31018.1	24	36	334	8.97	11.17	10	\$	381.00	\$	127,254
31016.1	24	36	98	11.11	11.52	11	\$	381.00	\$	37,338
31039.1	42	54	168	16.01	16.21	16	\$	603.00	\$	101,304
31037.1	42	54	177	16.24	13.86	15	\$	603.00	\$	106,731
31038.1	42	54	252	13.95	15.37	15	\$	603.00	\$	151,956
31007.1	42	54	459	15.86	15.26	16	\$	603.00	\$	276,777
3 JOOR .1	42	54	12	15.41	12.68	14	\$	603.00	\$	7,236
3 J 003.1	42	54	11	12.68	15.93	14	\$	603.00	\$	6,633
3.004 .1	42	54	137	16	15.91	16	\$	603.00	\$	82,611
3.005 .1	42	54	392	15.96	14.29	15	\$	603.00	\$	236,376
3 J 006.1	42	54	402	14.39	16.32	15	\$	603.00	\$	242,406
3 J 007.1	42	54	472	16.39	16.65	17	\$	603.00	\$	284,616
3 J 008.1	42	54	279	16.72	13.14	15	\$	603.00	\$	168,237
3 J 009.1	42	54	465	13.22	10.89	12	\$	603.00	\$	280,395
3.010 .1	42	54	197	11.07	13.1	12	\$	603.00	\$	118,791
3.011 .1	42	54	342	13.16	18.47	16	\$	603.00	\$	206,226
3 J 012.1	42	54	366	18.54	19.88	19	\$	603.00	\$	220,698
3.013 .1	42	54	21	20.09	20.19	20	\$	603.00	\$	12,663
3.014 .1	42	54	823	20.22	12.86	17	\$	603.00	\$	496,269
3 K 069.1	42	54	221	12.89	13.15	13	\$	603.00	\$	133,263
3 K 068.1	42	54	612	13.19	13.62	13	\$	603.00	\$	369,036
3K064.1	42	54	828	13.66	11.42	13	\$	603.00	\$	499,284
3K061.1	42	54	824	11.53	15.9	14	\$	603.00	\$	496,872
3L078.1	42	54	30	16.18	15.41	16	\$	603.00	\$	18,090
3L080.1	42	54	455	15.48	5.76	11	\$	603.00	\$	274,365
$3 \mathrm{L081.1}$	42	54	399	5.83	14.55	10	\$	603.00	\$	240,597
3L082.1	42	54	156	14.79	14.49	15	\$	603.00	\$	94,068
3L083.1	42	54	135	14.6	13.2	14	\$	603.00	\$	81,405
3L106. 1	42	54	407	13.38	18.75	16	\$	603.00	\$	245,421
3L084.1	42	54	402	18.81	18.83	19	\$	603.00	\$	242,406
3L052.1	48	60	35	18.9	18.67	19	\$	663.30	\$	23,216
3L053.1	48	60	461	18.81	17.57	18	\$	663.30	\$	305,781
3L054.1	48	60	180	17.49	17.29	17	\$	663.30	\$	119,394
3L055.1	48	60	357	17.33	13.72	16	\$	663.30	\$	236,798
3L056.1	48	60	497	13.76	12.39	13	\$	663.30	\$	329,660
4L018.1	48	60	825	12.42	15.39	14	\$	663.30	\$	547,223
4L017.1	48	60	875	15.39	18.53	17	\$	663.30	\$	580,388
4L016.1	48	60	451	18.58	21.4	20	\$	663.30	\$	299,148

Section 6
 Meeting \#4

Thursday 5:30pm-7:30pm
November 8, 2001

Location: Main Library, 100 Rock St.East Room $1^{\text {st }}$ Floor

Parking @ the lot across from the Main entrance on Rock Street.

Line Work

Utility Trunk Sewer Upgrades $\quad \$ 53.1$ Million
72" Parallel to Twin 60" Trunks
36" Force Main (42,000 LF) from Arch LS to Fourche WWTP
42" Force Main (3,100 LF) from Cantrell LS to Gravity Line
Pump Stations
Cantrell - 25MGD to 40 MGD (New Station) $\$ 5.7$ Million
Arch - 35 MGD to 60 MGD (New Station) $\$ 7.5$ Million
Treatment
Little Maumelle 4 MGD WWTP with 10 MG Storage $\$ 18.9$ Million
Adam WWTP Upgrades
Fourche WWTP Upgrades

Price (\$)

\$30.4 Million
\$7.5 Million
\$0.6 Million
\$24.0 Million
\$29.3 Million

	Price (\$)	
Line Work		
Utility Trunk Sewer Upgrades	$\$ 53.1$	Million
72" Parallel to Twin 60" Trunks	$\$ 3.4$	Million
30" Force Main from Little Maumelle LS to Gravity Line	$\$ 18.3$	Million
60" Gravity Line from Little Maumelle FM to Cantrell LS	$\$ 1.6$	Million
Twin 36" Force Main from Cantrell LS to Gravity Line	$\$ 17.5$	Million
72" Gravity Line from Cantrell FM to Adams WWTP	$\$ 7.5$	Million
36" Force Main (42,000 LF) from Arch LS to Fourche WWTP		
		$\$ 8.3$
Pump Stations	$\$ 7.5$	Million
Cantrell - 25MGD to 70 MGD (New Station)	$\$ 3.1$	Million
Arch - 35 MGD to 60 MGD (New Station)		
Little Maumelle to 16 MGD (New Station)	$\$ 24.0$	Million
Treatment	$\$ 29.3$	Million
Adam WWTP Upgrades		

OPTION 3

Price (\$)
Line Work
Utility Trunk Sewer Upgrades \$53.1 Million
42" Force Main (3,100 LF) from Cantrell LS to Gravity Line \$0.6 Million
Pump Stations
Cantrell - 25MGD to 40 MGD (New Station) \$5.7 Million
Storage
65 MG Sewer Surge Storage $\$ 43.6$ Million
Treatment
Little Maumelle 4 MGD WWTP with 10 MG Storage

OPTION 4

Line Work
Utility Trunk Sewer Upgrades $\quad \$ 53.1$ Million
$60^{\prime \prime}$ Parallel to Twin $60^{\prime \prime}$ Trunks
\$13.1 Million

Pump Stations

Cantrell-25MGD to 40 MGD (New Station)
Arch - 35 MGD to 45 MGD (LS Upgrade)
\$5.7 Million
\$2.2 Million
Storage
35 MG Sewer Surge Storage $\quad \$ 30.6 \quad$ Million
Treatment
Adam WWTP Upgrades
Little Maumelle 4 MGD WWTP with 10 MG Storage
Fourche WWTP Upgrade to 50 MGD
\$24.0 Million
$\$ 18.9$ Million
\$12.0 Million
35 MG Sewer Surge Storage \$30.6 M
Flow Equalization Storage $\$ 20.2 \mathrm{M}$
Lift Station Construction $\$ 5.2 \mathrm{M}$
60" Gravity Collection Line $\$ 5.2 \mathrm{M}$
65 MG Sewer Surge Storage
\$30.6 M
\$30.6 M
Flow Equalization Storage
Flow Equalization Storage $\$ 7.9 \mathrm{M}$
$60^{\prime \prime}$ Gravity Collection Line \$5.2 M
Cantrell Pump Station Upgrades25 MGD to 40 MGD$\$ 43.7$ M
25 MGD to 70 MGD (Includes \$ for) \$26.9 M$\$ 5.7 \mathrm{M}$
New Pump Station \$8.3 M
Force Main Upgrade to Twin 36" parallels \$1.1 M
Gravity Line Upgrade to 72" DIA \$17.5 M
Little Maumelle Pump Station UpgradesUpgrade Pump Station to 16 MGD (Includes \$ for)$\$ 35.0 \mathrm{M}$
Pump Station Upgrade
Upgrade Force Main to 30" DIA $\$ 3.1 \mathrm{M}$ \$13.3 M
Upgrade Gravity Line to 60" DIA \$18.6 M
Arch Pump Station Upgrades
Upgrade Pump Station 35 MGD to 45 MGD \$2.2 M
Upgrade Pump Station 35 MGD to 60 MGD (Includes \$ for) $\$ 15.0 \mathrm{M}$
Upgrade to Pump Station $\$ 7.5 \mathrm{M}$
36" Force Main (42,000 lf) \$7.5 M
Upgrade Adams WWTP $\$ 24.0 \mathrm{M}$
Little Maumelle 4 MGD WWTP w/ 10MG Storage Capacity \$18.9 M
Utility Trunk Sewer Upgrades \$53.1 M
72" Parallel along Twin 60' Trunks (45,772 LF) \$30.4 M
60" Parallel along Twin 60" Trunks (22,886 LF) \$13.1 M

Section 7
 Meeting Minutes

GRIST ENGINEERS, INC.

1405 North Pierce Street, Suite 301
Little Rock, Arkansas 72207
Telephone (501) 664-1552 Fax (501) 664-8579
crist@aristotle.net
Donald R. Nutt
Larry D. Gaddis

September 12, 2001
Brian Williams
Montgomery Watson Harza
811 Lamar, Suite 210
Ft. Worth, TX 76102
Dear Brian:

Attached are 3 copies of the minutes from our CAG Workshop 1.
Yours truly,

Stewart Nolan
cc: John Holloway
Mary Eicholtz

WORKSHOP 1 MINUTES
 LITTLE ROCK WASTEWATER UTILITY
 CITIZENS ADVISORY GROUP
 SEPTEMBER 6, 2001
 5:30-7:30 PM
 MAIN LIBRARY EAST ROOM

Attendees: Gary Griffin, Reggie Corbitt, Willie Hinton, Troy Laha, Jim Lynch, Pat Miller, Charles Mathis, Mary Eicholtz, Brian Williams, Stewart Noland

1. Reggie Corbitt opened the meeting with remarks concerning the mission of the Little Rock Wastewater Utility (LRWU) and the ramifications of the Clean Water Act. Reggie thanked the members for serving on the Citizens Advisory Group (CAG) and cited the importance of the CAG input in the wastewater collection system master plan work.
2. Brian Williams explained how input from the CAG would be used and provided information about the collection system master plan study. The CAG will be asked to review alternative solutions to collection system deficiencies. The review will include monetary, non-monetary and time considerations in respect to implementing any capital improvement program.
3. Stewart Noland explained the relationship of individual service lines, gravity collection system lines, pump stations, force mains, wastewater treatment plants, and effluent discharge limits into receiving streams as elements associated with providing sewer service to all sewer system customers. The point was made that individual service lines that are not owned by the LRWU are known to contribute up to 50 percent of the total infiltration and inflow (I/I) to the sewer collection system.
4. Brian Williams further discussed service lines and the potential impact of various approaches to addressing service lines. A brief description of the electronic model being prepared by Montgomery Watson Harza for the sewer system master plan was provided. Further explanation was given with regards to model input for system, rainfall activity and groundwater conditions and how this data relates to model calibration and prediction of system overflows.
5. Mary Eicholtz led a discussion of group missions and objectives which resulted in the following issues being identified:

1.1 Address service line issues

1.2 Develop a broad strategy and plan of public engagement
1.3 Provide feedback to problems in the utility
1.4 Address means of financing the improvements, particularly new treatment facilities
1.5 Address unsewered areas
1.6 Address rehabilitation of existing sewers
6. The meeting concluded with a visit to the Cantrell Road pump station and the Adams Field Wastewater Treatment Plant.

WORKSHOP 2 MINUTES LITTLE ROCK WASTEWATER UTILITY CITIZENS ADVISORY GROUP
 SEPTEMBER 27, 2001
 5:00-7:30 P.M. MAIN LIBRARY EAST ROOM

Attendees: Peter Christiansen, Raymond Heaggans, Laura Clift, Bob Turner, Gary Griffin, Willie Hinton, Charles Mathis, George Brown, Brian Williams, Mary Eicholtz, Stewart Noland

1. The meeting started at 5:00 p.m. for the benefit of those members that could not attend the first meeting. Stewart reviewed the mission of the Little Rock Wastewater Utility (LRWU) and how the wastewater collection and treatment system relates to the Clean Water Act. Stewart explained how the current study is part of an ongoing effort by the LRWU to address collection system issues, and he discussed the relationship of various components of the wastewater collection and treatment system.
2. Brian Williams explained the importance of the CAG input to the collection system planning effort, and he explained that the CAG will be asked to review alternative solutions to collection system deficiencies.
3. Shortly after 5:30 Mary Eicholtz opened the meeting to the full group and encouraged participation among all members.
4. Brian Williams distributed a list of terms, a list of problem areas identified by the collection system study, and a map showing the location of the problem areas. Brian led a discussion of the problem areas and explained that alternative solutions will be provided at the next meeting.
5. Brian showed a video on the Houston Wastewater Program that featured wet weather facilities, and he gave a power point presentation on sewer line problems and rehabilitation technologies.
6. Mary Eicholtz led a discussion concerning a group mission statement that culminated in the following:

Mission is to understand, evaluate, and recommend through citizen input cost effective and environmentally sound long range alternatives.
7. Mary led a discussion that identified issues and concerns. The issues and concerns were grouped into 5 major issues with the following priorities.

Priority	Major Issues	Concerns
1	Environmental	Effect on community Public health and safety Odor Land use Noise Energy
1	Citizen Awareness	Cost to citizens Location of facilities Effect on property value Public announcement of discharges Recreation impact Stay ahead of regulators Alternate uses of easements Aesthetics
2	Technical/Ongoing	Long term effectiveness Life expectancy Ability to be expanded How and why recommendation Condition of current system Growth limits Policy issue on service line Operation and maintenance
3	Regulatory	Effect on floodplains Water quality Discharge limits Regulatory
4	Construction	Disturbance and duration Time to complete Materials of construction Risks

WORKSHOP 3 MINUTES LITTLE ROCK WASTEWATER UTILITY CITIZENS ADVISORY GROUP
 OCTOBER 25, 2001
 5:30-7:30 P.M. MAIN LIBRARY EAST ROOM

Attendees: Willie Hinton, Pat Miller, Jim Lynch, Charles Mathis, George Brown, Laura Clift, Mary Eicholtz, Troy Laha, Bob Turner, Brian Williams, Peter Christiansen, John D'Antoni, Stewart Noland

1. Mary Eicholtz opened the meeting by reviewing the progress made to date by the group.
2. Brian Williams presented four alternatives for overall collection and conveyance system rehabilitation / improvements, each of which was followed by detailed discussion. A cost of $\$ 30$ million was added to Options1 and 2 for upgrading the Fourche Creek Wastewater Treatment Plant. A summary sheet and map for each alternative was presented. Brian emphasized to the group that a combination of options from the four alternatives could be mixed and matched to create additional alternatives. Brian provided a cost basis for both the rehabilitation work in individual areas and other larger elements of the work.
3. Brian explained that for purposes of simplifying possible combinations for alternatives the group should look at splitting the City into two areas, north and south. For the northern portion of the City look at a new treatment plant in Maumelle versus conveyance to Adams WWTP, and for the south, look at varying levels of storage / treatment (along the twin 60's) with no, or partial conveyance versus total conveyance through the Twin 60's and parallel relief to Adams WWTP.
4. Jim Lynch discussed the Sierra Club lawsuit and its effect on the collection system planning. Brian explained that the lawsuit is related by subject matter only and that the Utility's current planning effort is the second phase of $a+10$-year plan undertaken as part of an ongoing effort to correct existing system deficiencies and maintain the system in an efficient and cost effective manner.
5. Bob Turner suggested stacking / paralleling lines to gain the needed additional capacity as an alternate to removing and replacing with increased diameter lines.
6. Mary discussed an Alternatives Evaluation Matrix that was initially developed at the second Workshop. Based on the group's input the matrix was modified according to the following categories and weights.

WORKSHOP 4 MINUTES
 LITTLE ROCK WASTEWATER UTILITY
 CITIZENS ADVISORY GROUP
 NOVEMBER 8, 2001
 5:30-7:30 PM
 MAIN LIBRARY EAST ROOM

Attendees: Pat Miller, Willie Hinton, Charles Mathis, Laura Clift, George Brown, Gary Griffin, Mary Eicholtz, Jim Lynch, Troy Laha, Bob Turner, Pete Christiansen, John D'Antoni, Brian Williams, Stewart Noland

1. Mary Eicholtz opened the meeting by reviewing the agenda as provided in Section 2 of the binder.
2. Jim Lynch stated that he is not opposed to the Maumelle WWTP, but that it is a huge issue for the City. Jim reiterated the issue of how will the Maumelle WWTP be financed; who will pay for it? Jim distributed a letter he sent to Brian Williams and Brian's response and asked that they be included as part of the meeting minutes (see attached). Jim stated that construction of the Maumelle WWTP will impact the future development of the City. Jim said that the City is facing a relocation issue, not growth. Jim recommended that the group continue to meet and that LRWU staff be present at the meetings. Jim recommended that the Committee review the MWH report and recommendations as they are developed.
3. Brian Williams reviewed the four options including the revised cost estimates (see attached). Brian encouraged the group to evaluate the options based on the north and south parts of the City summarized as follows.

South

Storage and Adams WWTP
Partial Storage and Fourche WWTP
72 inch line and Adams WWTP

Brian also distributed a map (see attached) showing the severity of infiltration/inflow problems in the City according to a ratio of wet weather flow to dry weather flow.
4. Mary Eicholtz distributed the Evaluation Criteria and Evaluation Matrix.
5. Peter Christiansen distributed and discussed an alternative option (see attached). An important element of the alternative includes assessing a monthly fee to address service lines with the work to be performed by licensed plumbers.

To: brian.a.williams@mwhglobal.com
cc: mmeicholtz@ualr.edu, griffing@adeq.state.ar.us, lahaengrsis@msn.com, cmathis@baptist-health.org, pmiller@msfrost.com, tluther@Irwu.com

Subject: Little Rock Wastewater / Advisory Group Planning

MR. WILLIAMS:
I am writing as a member of the LRWWU Citizens Advisory Group. I have read and reflected on the documents you distributed at the meetings including the latest meeting where the four long-term options for systems upgrade were discussed at some length. As I noted to you and the Advisory Group during the meeting on Oct. 25th, three of the four options include the construction of the Maumelle Wastewater Treatment Plant at a cost of $\$ 18.9$ million.

I also noted during previous meetings that (in the longer-term planning scenario sense) the construction of the system's third wastewater treatment plant has enormous implications for the future of the community. This plant will effectively set the stage for the ultimate "sewering" of the Little Maumelle Basin, an area of approximately 80 square miles. This area is capable of supporting a second city equal in size to the present population of Little Rock.

While we have been empaneled to assist LRWWU in its long-term planning, I am troubled that the advisory group's discussions have ignored these long term implications. Our current approach is not "long-range planning," in my judgement. Rather, the advisory meetings seem designed to narrowly define LRWWU's long-term problem only as a stormwater or "infiltration" issue. No doubt this is true as far as it goes, however, my point is that this is not the ONLY issue that LRWWU and the advisory group ought to be discussing.

LRWWU HISTORY WE SHOULD BE DISCUSSING

I have lived in LR for 30 years, formerly worked at City Hall (1970s) and try to stay informed on community issues. Based on my knowledge and that of others with whom I have talked, the wastewater options you and the MWH team have developed are a predictable consequence of municipal and LRWWU policies that have finally caught up with all of us. Candidly, the riverfront interceptor was never designed to accept the sewer flows it is now transporting. The original design had the interceptor stopping (as a western terminus) somewhere in the vicinity of Jimerson Creek. Yet, because of intense community and EPA formal opposition to a treatment plant in the mid-1970s (1976), the LRWWU continued to approve all subsequent development proposals in the Little Maumelle Basin.

Much to its credit, the LRWWU Commission in 1980 actually adopted a policy resolution noting the lack sewer capacity in the Maumelle Basin and said it would limit new hookups not to exceed 11,000 persons (new customers to the LRWWU system). Apparently the policy had a very short shelf-life. My understanding is that all new projects have been approved by the LRWWU and its staff since this time in the Maumelle Basin. Of course, this direction has led to the SSO's you have been hired to study and analyze. Yet, there has been no mention of this cause-and-effect in our meetings.
(The above information is readily available in the "site study" you mentioned to the Advisory Group but which has not been distributed to the Advisory Group. This study is titled "Little Maumelle River Subbasin Sewerage Study" and is dated May, 2001. This study contains as an appendix the 'Sewer Service Study
for Northwest Little Rock, April, 1980. It seems to me that our group ought to read this study and be made fully aware of what has already happened, why it happened, and thus be more able to make a judgement about how to proceed. This approaches real planning, in my judgement, not the superticial exercise currently underway on Thursday evenings.)

My general point is this -- no one can solve a problem unless we understand and can correctly define what the problem is the in the first place.

Does LR have an infiltration problem? Yes. Does LR have a problem approving new additions to the system with no idea how to serve the new areas while simultaneously complying with state and federal public health and environmental laws, rules and regulations? Yes. Does LR ever raise this issue when a key vote is on the evening's policy agenda? Not that I can remember.

LITTLE ROCK HISTORY WE SHOULD BE DISCUSSING

You should know that this issue of ignoring the real costs of development has been aired on countless occasions at City Hall and in other forums. The official response has been -- all this growth "pays for itself" and "no problem" exists anywhere. Now of course, you reveal that LR ratepayers should contribute $\$ 18.9$ million for a treatment plant that has never been mentioned in the countless discussions of project approvals in the Little Maumelle Basin.

With great respect to Mr . Bob Turner, his comment last week about "it is impossible to direct or manage growth" is not correct but very symptomatic of the problem in Little Rock. Where public infrastructre is sited, financed, etc. has a tremendous affect on growth patterns. Every engineer, urban planner and politician knows this. LR simply cannot bring itself to discuss it, however.

We have an enormous growth problem -- actually LR has very little "net" growth" because the city (and the LRWWU) is losing customers in the East and Central part of LR (the 6,000 absent residents I noted in the last advisory meeting) -- because the scenario you have outlined proposes tens of millions for new treatment and collection capacity while we actually have excess capacity in the established regions of the city. An amateur could conclude this is not efficient and we ought to try to "do something different."

When the real costs of development are ignored, an effective subsidy of the development is the obvious result. Someone is paying the cost, somewhere -- i.e., We have constant SSOs in LR. Very predictable. In addition, we lowball the costs of locating in the suburbs, thus undermining an announced City Hall strategy to "invest in the existing city, revitalize neighborhoods, etc." Instead, city residents find they can move out of a less-fashionable neighborhood and pay only a fraction of the cost that their new home site really costs.

The relocation problem of LR from east to west (rather than an actual growth problem) can be affected -despite Mr. Turner's assertion to the contrary -- if we thoughtfully look at our history and thread our way through a discussion of real planning issues in our community. Where wastewater infrastructure is built, how it is paid for, etc., greatly affects development patterns. Sewer is vital for urban development, period. It ought to be a tool to achieve the kind of city we want to live and work in, rather than viewed as a passive service to satisfy whatever the latest demand is for a real estate project.

WHAT IS NEXT?

This letter already is too long and so I will conclude with these specific requests:
(1) The Advisory Group should receive copies of the previously-mentioned Little Maumelle River Subbasin Study, May 2001. (I might add that the cover page says the study is "Prepared for
the Water/Wastewater Advisory Committee.")
(2) The Advisory Group needs to meet on a continuing calendar. I don't know from where the idea came that we would meet only "five times." This notion falls far short of the problems LRWWU is confronting. This ought to be a decision of the Advisory Group, not a consultant.
(3) The Advisory group should request to hear directly from City Hall about its response to the Sierra litigation. Bob Turner said he "would not discuss it," however, it is the municipal government that is the party, the allegations of clean water violations are serious and the Advisory Group needs to know what the policy options are. I know that Sierra has proposed that City Hall conduct a comprehensive "urban development impact study" of the entire Little Maumelle Basin, a proposal which helps avoid repeating the planning (lack of planning, actually) mistakes of the past. Is City Hall again refusing to acknowledge the real costs of development? How can our Advisory group 'advise' on anything substantive if we are ignorant of the options, the nuances, etc.?

Thank you for your efforts to date. However, if you and MWH are really going to assist Little Rock, we need an added focus to your work and that of the Advisory Group. Anything less will result in largely superticial product and an enormous waste of everyone's good intentions and time.

Best Regards,

JIM LYNCH
Member
LRWWU Citizens Advisory Group
P.S.

Below is a web address for the "decentralized wastewater" project now underway in Austin, TX. I recommend your checking it out and including this "option" in future discussions with the Advisory Group. As I understand the approach, smaller decentralized treatment facilities do offer advantages --- perhaps even lower cost with the same effectiveness. In addition, in these new times of possible external threats, might it not be worth discussing new treatment facilities that were not a single, "big plant" and thus relatively more vulnerable to sabotage? Food for thought.

Alternative Wastewater Management Program, City of Austin, Texas
http://www.ci.austin.tx.us/wri/altern.htm

Mr. Lynch,
Our vision for the Citizen's Advisory Group (CAG) was to create a forum where a diverse group of Little Rock community members would be able to learn the basic elements for installation, maintenance and operation of the City's wastewater system. We also wanted to brief the group on the electronic model we created to simulate how the wastewater system functions during the design storm event. More importantly, it was our desire to get the group to exchange this knowledge amongst themselves, as well as others in the community, and provide recommendations on the information and data presented at the workshops. Ultimately, CAG recommendations were intended to assist us in completing the second phase of the City's continuing program that is being performed to provide a practical, cost effective and efficient approach for solving existing and future wastewater problems.

Admittedly, our success with the CAG relies on each member's active participation in discussing issues and providing recommendations. Since the first workshop, we have openly encouraged CAG members, during and after their involvement with the CAG, acting either as a group or separately, to continue their interaction with the City and its related departments to assist with editing and adopting a new wastewater master plan. Towards this end, your correspondence stands testament that, in some measure, we have been successful in achieving our goal. Your opinions, concerns and ideas are very important and should in no way be restricted to the venue that the CAG offers. We fully intend to include all recommendations agreed to by the CAG membership into our final report for the "System Evaluation and Capacity Assurance Plan". In response to the 3 items you requested:

1) A copy of the "Little Maumelle River Subbasin Sewerage Study", Final Draft, September 2001, will be available at the next CAG Workshop for review by any member of the group should they wish to do so. It should be noted that draft copies (dated May 2001) of the same study were submitted by the Wastewater Utility to the State "Water/Wastewater Advisory Committee" which provides oversight for municipal funding of capital improvements. This is the first step of standard procedures for investigating funding sources for wastewater projects. Additionally, the study recommends the wastewater treatment plant as the selected alternative for the Little Maumelle Basin. Capital costs for this alternative were included in the cost options provided to the CAG during Workshop \#3.
2) CAG members committed their time to participate in four (4) two-hour workshops over the course of several months. The November 8 meeting completes this commitment. Since we are unable to speak for the CAG
members, the members must be polled on their willingness to commit additional time. Should the group choose to continue meeting, the recommendation will be passed onto the Utility.
3) As with any recommendation approved by the CAG, the City can be requested to provide information regarding the Sierra Club legal proceedings.

As we explained in prior workshops, the CAG and modeling effort presently underway are being performed as part of a second phase of an ongoing wastewater program intended to provide future enhancement and correct existing problems for the City's sanitary sewer system. This second phase was not started specifically to respond to the Sierra Club issue rather, it represents one of many studies and tools the Wastewater Utility incorporates into their efforts to maintain an effective approach to handling the City's long term system needs.

Again, we appreciate and look forward to your continued input and involvement in the CAG.

Brian Williams

Section 8 Exhibits

Aging Sewers can Have Many Problems

Failed Sewers can Cause Collapses

Sewer Rehabilitation

D
0
0
0
0 0
0
0
0
0
0

우 우

Form Lining \otimes
] I. $\stackrel{\square}{\circ}$

Sliplining

\vdots
\vdots
Storage \& Wet Weather Facilities

Wet Weather Facilities

Adams Field Wastewater Treatment Plant City of Little Rock, Arkansas

CAPITAL IMPROVEMENT PLAN OPTIONS

$\left.\begin{array}{lc} & \begin{array}{l}\text { TABLE OF } \\ \text { Subject }\end{array} \\ & \\ \text { CONTENTS }\end{array}\right]$ Page No.

000

		Minimum Diurnal	Average Day	Secondary Max	y Preliminary Max
Influent Channel Distribution Box					
Length	ft	38	38		
Width	$\mathrm{ft}^{\text {d }}$	8	8	8	8
Wall Elevation	msl	257	257	257	257
(atal Volume	msl	219	219	219	219
Max WSE	gal	86,409	86,409	86,409	86,409
Available Volume	msl	225 13,644	${ }_{13,644}$	225	225
Avalabe Volume	gal	13,644	13,644	13,644	13,644
- Influent Screening Channels					
Number of Channels	\#				
Channel Flow	mgd	8.0	15.0	${ }_{2} 50$	$\stackrel{3}{313}$
Length	ft	35	35	25.0 35	31.3 35
Width	ft	6	6	6	35 6
Slab Elevation (raise wall $\mathbf{2}^{\prime} 0^{\prime \prime}$)	ms	227.6	227.6	227.6	227.6
Max WSE	mst	218.0	218.0	218.0	218.0
Channel Velocity	$\mathrm{ft/s}$	${ }_{2}^{223.2}$	223.7	223.7	223.7
Influent Wet Well Feed Pipe					
Number of Feed Pipes	\#				
Flow	mgd	8.0	15.0	$\stackrel{3}{3}$	${ }_{3}^{3}$
Diameter	in	42	42	25.0 42	${ }^{31.3}$
Velocity	ft/s	1.3	2.4	4.0	5.0
Influent Wet Well					
Number of Wet Wells	\#				
Wet Well Flow	mgd	8.0	15.0	3	3
Length	${ }_{\text {ft }}$	25	15.0 25	25.0 25	31.3
Width	ft	22	22	22	22
Wall Elevation	ms	252	252	252	252
Total Wet Well Volume	msl	205	205	205	205
Max WSE	gal msI	193,358 225	193,358	193,358	193,358
Available Wet Well Volume	gal	82,280.0	82,280.0	82,280.0	82,280
Wet Well Detention Time	min	14.8	7.9	4.7	3.8

Minimum Average Secondary Preliminary

Minimum Average Secondary Preliminary
Minimum
Diurnal

		Minimum Diurnal	Average Day	$\begin{gathered} \text { Secondary } \\ \text { Max } \\ \hline \end{gathered}$	$\underset{\text { Max }}{\substack{\text { Preliminary } \\ \hline}}$
Influent Pumps					
Number of Existing Pumps	\#	4.0	4.0	4.0	
Number of New Pumps	\#	2.0	2.0	2.0	2.0
Capacity of Existing Pumps	gpm	11,800	11,800	11,800	11,800
Capacity of New Pumps	gpm	21,000	21,000	21,000	21,000
Total Pumping Capacity	gpm	89,200	89,200	89,200	89,200
Total Pumping Capacity	mgd	128.4	128.4	128.4	128.4
New Influent Pumps out of Service	\#	1.0	1.0	1.0	1.0
Total Pumping Capacity	gpm	68,200	68,200	68,200	
Total Pumping Capacity	mgd	98.2	98.2	98.2	98.2
Primary Clarifier Flow Control (Mag Meter)					
Number of Flow Meters	\#	3	3	3	3
Flow Meters in Service		1	2	3	3
Flow Each Meter	mgd	8.0	15.0	25.0	31.3
Diameter	in	24	24	24	24
Velocity	ft/s	3.9	7.4	12.3	15.4
Primary Clarifier Feed Pipes					
Number of Feed Pipes	\#	3	3	3	3
Number of Feed Pipes in Service	\#	1	2	3	3
Flow Each Pipe	mgd	8.0	15.0	25.0	31.3
Diameter	in	42	42	42	42
Velocity	ft/s	1.3	2.4	4.0	5.0
Primary Clarifiers					
Number of Existing Clarifiers	\#	3	3	3	3
Clarifiers in Service	\#	1	2	3	3
Flow Each Clarifier	mgd	8.0	15.0	25.0	31.3
Clarifier Dia	ft	115	115	115	115
Clarifier Area Each	sf	10,387	10,387	10,387	10,387
Clarifier Area in Service	sf	10,387	20,774	31,161	31,161
Clarifier Hydraulic Loading	$\mathrm{g} / \mathrm{d} / \mathrm{sf}$	770	1,444	2,407	3,017

$\underset{\text { Diurnal }}{\text { Minimum }} \quad \begin{gathered}\text { Average } \\ \text { Day }\end{gathered} \quad \begin{gathered}\text { Secondary Preliminary } \\ \text { Max }\end{gathered}$

Aeration Basin Flow Control (Mag Meters)
Number of Meters
Flow Each Meter
Diameter
Velocity
Mag Meters out of Service
Flow
Velocity

Aeration Basin Feed Pipes
Number of Feed Pipes
Flow
Dianeter
Velocity
Feed Pipes out of Service
Flow
Velocity

Aeration Basin Effluent Header
Number of Headers
Flow
Diameter
Velocity

Aeration
Reactor Design
Design Temperature
Minimum SRT For Nitrification
Operating SRT
Design Yield (lbs/libs BOD
removed)
System Effluent CBOD
Net Yield
Aerobic MLSS
Aerobic Mass
Aerobic Volume
HRT
F/MVolume
A/
$\underset{\text { Diurnal }}{\text { Minimum }} \underset{\text { Day }}{\text { Average }} \underset{\text { Max }}{\text { Secondary }} \underset{\text { Preliminary }}{\text { Max }}$

$\underset{\text { Diurnal }}{\text { Minimum }} \begin{gathered}\text { Average } \\ \text { Day }\end{gathered} \quad \begin{gathered}\text { Secondary } \\ \text { Max }\end{gathered} \underset{\text { Max }}{\text { Preliminary }}$
Average Secondary Preliminary $\begin{array}{ccc}\text { Minimum } & \begin{array}{c}\text { Average } \\ \text { Day }\end{array} & \begin{array}{c}\text { Secondary } \\ \text { Max }\end{array} \\ \text { Max }\end{array}$

		Diurnal	Day	Max	Preliminary Max
Existing Aeration Basins (Based on Q)					
Number of Basins	\#	6	6	6	
Basin Flow Each	mgd	1.2	4.8	12.2	
Length	ft	160	160	160	
Width	ft	40	40	40	
Top of Wall	msl	258.57	258.57	258.57	
Bottom of slab	msl	239.57	239.57	239.57	
Basin Volume	mg	0.91	0.91	0.91	
Maximum WSE	msl	257.25	257.25	257.25	
Available Basin Volume	mg	0.85	0.85	0.85	
Total Available Basin Volurne	mg	5.08	5.08	5.08	
Basin Detention Time	hr	16.5	4.2	1.7	
Number Basins Out of Service	\#	,	1	1	
Basin Flow	mgd	1.48	5.76	14.66	
Basin Detention Time	hr	13.7	3.5	1.4	
Aeration Requirements					
Daily Ave Oxygen Req	$\mathrm{lbs} / \mathrm{d}$	23,416	23,416	40,786	
Diurnal Peaking Factor		1	1.5	1.5	
P Hour Oxygen Req	$\mathrm{lbs} / \mathrm{d}$	23,416	35,124	61,179	
Transfer Efficiency	\%	12\%	12\%	12\%	
Total Oxygen Supply	lbs/d	195133	292700	509825	
Oyygen/Air	\%	22\%	22\%	22\%	
Air Supply Required	lbs/d	886,970	1,330,455	2,317,386	
Air ${ }_{\text {Air }}$	lbs/cf	0.064	0.064	0.064	
Air Supply Summary Total Air Supply	ct/d	13,859,000	20,788,000	36,209,000	
Summary Total Air Supply Req'd	scfm	9,600	14,400	25,100	
Air Flow per SF of 12" Diffuser	sfm	4.1	6.1	10.7	
WAS Sludge Yield					
WAS Yield	lbs/d	7.521	28,231	50,140	
Percent Solids	\%	0.7\%	0.7\%	0.7\%	
Flow	mgd	0.13	0.48	0.86	

Adams Field Wastewater Treatment Plant
City of Little Rock, Arkansas
CAPITAL IMPROVEMENT PLAN
OPTIONS

ADAMS FIELD WWTP FLUXOGRAM

Su[อ] อగ อఇన

New $48^{\prime \prime}$ primary effluent piping will run from the primary clarifiers to a new $72^{\prime \prime}$ primary effluent header
The primary effluent header will convey the maximum flow to the Intermediate Pump Station.

Intermediate Pumping/Flow Equalization

An intermediate pump station will be required to convey the primary effluent to the secondary treatment unit processes. The modifications to the hydraulics within the secondary treatment units result in need for the pumping of primary effluent. The intermediate pump station will include four (4) variable speed
intermediate pumps as well as overflow weirs to divert addition plant influent flow The flow will be intermediate pumps as well as overflow weirs to divert addition plant influent flow. The flow will b
diverted to the flow equalization basin or in an emergency to the existing plant by-pass line. The diverted to the fiow equalization basin or in an emergency to the existing plant by-pass line. The
maximum hydraulic capacity of the primary unit processes is 94 mgd and the maximum hydraulic capacity of the secondary unit processes is 74 mgd. If 94 mgd event were to occur, the additional flow over the secondary maximum capacity would be diverted to a flow equalization basin. An adjustable overflow weir is provided within the intermediate pump station to convey additional fow to the flow
equalization basin. equalization basin.

The flow equalization basin is sized to accommodate 25 million gallons. The primary effluent diverted to the flow equalization basin is returned to the headworks. A pipeline from the flow equalization basin ties into the existing manhole (noted as MH No. 2 on the 1958 Contract No.2- Trunk Sewer drawings (Burns
and McDornell)) located within the existing 60 "sewer interceptor coming into the WWTP from the south. A fowmeter and flow control valve are provided in the flow equalization basin effluent piping to control
the eetum of the primary efluent the return of the primary effluent.

In the event of a shut down of the intermediate pumps, an additional overflow weir is provided within the intermediate pump station to convey the influent flow to the existing secondary by-pass piping. The existing primary effluent piping is used to convey the flow from the Intermediate Pump Station to the by-
pass diversion boxes.

Secondary Treatment

Two alternatives in conveying the flow from the intermediate pump station to the aeration basins were investigated. Altermative A consists of pumping the primary effluent into the existing mixing box and then using separate RAS and A Aeration Basin Influent piping. Alternative B consists of pumping the primary
effluent into an Aeration Basin Influent (ABD) header indluding both primary efluent and RAS.

The primary effluent will be pumped to the existing mixing box in Alternative A. The flow will then be conveyed through the existing ABI piping. Flow control assemblies will be included within the individual aeration basin influent pipes. With he modification of the aeration basin process, the influent pipes will be ented to the opposite end of he basin. The aeration basin water surface level will increase due to changes in the mixed liquor piping. Additional headloss will be generated in the ABI piping. This will
result in an increase in the water surface level in the mixing box above the existing structure. The water surface increase is limited by removing the RAS from the aeration basin influent piping, but additional modifications to the mixing box structure are required. The water surface elevation is approximately 259.9
requiring an increase in the mixing box walls to an elevation of 261 , assuming one foot of freeboard.

Attenative B eliminates she use of the mixing box and includes a pressurized aeration basin influent header. The RAS is mixed with the primary effluent in the ABI header. The header is connected to the six
(6) existing individual ABI pipes. The ABI piping configuration going to each aeration basin will be the same as in Alternative A. This alternative will eliminate the need for an increase in the mixing box walls.

technical memoranoum Ch2MHILL

Mike Guthrie/ CH2M HILL

 William R. Leaf/ CH2M HILL Shawn Clark/ CH2M HILL
Introduction

The Capital Improvement Plan for the Adams Field Wastewater Treatment Plant (WWTP) includes various hydraulic improvements for the conveyance of the desired wastewater fow. The hydraulic analysis was completed using WinHYDRO, a computer model developed by CH2M HILL. The model produces a hydraulic profile by calculating headloss through treatment plant hydraulic structures.

The hydraulic design approach is to convey the required wastewater and recycle flows through the plant allowing for non-submergence at all unit process effluent weirs. The maximum wastewater flow through wastewater flow, 37 mgd . The maximum wastewater flow through the primary clarifiers is 94 mgd . A flow equalization basin with a volume of 25 million gallons will be used to store the additional flow from the primary system.

The hydraulic analysis of the existing treatment plant is presented in a technical memorandum by
CH2M HILL, "Adams Field WWTP: Hydraulic Capacity of Existing Facilities", August 20, 1998.

Hydraulic Analysis Results

Primary Treatment
For the primary treatment unit processes to convey the required maximum flow of 94 mgd, piping
modifications are required. The influent pump station will include two new influent pumps and the accompanying piping. To convey the maximum fow, new influent piping to the primary clarifiers is required. New $42^{\prime \prime}$ primary influent piping will be tied into the existing influent piping. The existing piping under the primary clarifier foundation and influent columns are adequate in conveying the
maximum flow.

The primary clarifiers do not require significant modifications for hydraulic purposes. The existing serpentine effluent weirs will be replaced with non-serpentine effluent weirs. The primary effluent launders are adequately sized to convey the maximum flow. Primary Clarifier No. 3 will require a new
effluent box due to the new yard piping layout. The existing effluent boxes for Primary Clarifier No. 1 and No. 2 are able to pass the required flow.
Plant Effluent Piping
The major modification to the plant effluent piping (PLE) is to include a magnetic flowmeter and isolation flowmeter to function properly, the $42^{\prime \prime}$ line must always be in a full-pipe flow condition. At low flows, the existing PLE is not pressurized. To keep the $42^{\prime \prime}$ PLE in a full-flow condition, an effluent weir assembly is required downstream. The structure will include a weir at elevation 242.0 and be sized to limit the
headloss at larger flow events.
The effluent piping from the WWTP to the Arkansas River is reported by plant operators to be 72"with an outfall located at an approximate elevation of 220 . The normal water surface level of the Arkansas River is reported to be at an elevation of 231. The hydraulic analysis is completed assuming this elevation. The greater than 240 at the plant outfall. Any stage greater than 240 will lead to submerged effluent weirs with the WWTP conveying the secondary maximum capacity.
The intermediate pumps will be required to overcome the additional headloss generated with the RAS and
primary effluent together. Complex coordination issues may arise during the installation of the header.
New effluent weirs and piping will be installed for the aeration basins. The effluent weirs will be moved to the end of the aeration basins connecting the gallery. To accommodate the additional headloss within the
mixed liquor (ML) piping and flow control assembly, the aeration basin weirs and walls will be raised. The aeration basin walls will be increased by two feet to an elevation of 258.57. The effluent weirs will be raised to 257.25 . A freeboard of 0.9 feet will exist in the aeration basins at the maximum capacity of the
secondary system. A new launder will collect the aeration basin effluent and convey the flow to an effluent box.
The mixed liquor piping includes individual aeration basin effluent pipes connecting a common header. The ML header branches out to ML pipes connecting each secondary clarifier. The ML pipes to each secondary clarifier influent piping requires signification modification. The existing secondary influent columns prove to be hydraulic bottlenecks in the conveyance of large flows. The annular piping used for
the existing secondary influent columns will need to be replaced with $48^{\prime \prime}$ diameter columns. The ML pipelines are sized at $48^{\prime \prime}$ to limit headloss.
With the modifications to the influent piping on the secondary clarifiers and raising the aeration basin walls two feet, the existing WWIP can convey 59 mgd through the secondary processes with the three existing secondary clarifiers in service. For the WWTP to convey 74 mgd through the secondary processes, a new secondary clarifier is required. Additional hydraulic improvements may be made to convey the 74
mgd through the three existing secondary clarifiers, but the treatment capability of the WWTP would be compromised.
The maximum secondary flow of 74 mgd can be conveyed from the four (4) secondary clarifiers to the chlorine contact basin through the existing hydraulic structures with few modifications. The serpentine weir elevation will remain the same. The existing secondary effluent launders and effluent boxes are
adequate to convey the maximum secondary flow. The existing secondary effluent piping from the secondary clarifiers to the octagonal chamber can convey the required flow. The octagonal chamber can
convey the maximum secondary flow given some modifications. A study of the existing facility noted vortexes forming at the outlet of the chamber at higher flows. A vortex-breaker should be installed to reduce this phenomenon.
The chlorine contact chamber (CCC) requires some structural modification to convey the maximum The influent channel tums the influent flow 90 -degrees from the secondary effluent line outlet this revisions. The influent channel turns the influent flow 90 -degrees from the secondary effluent line outlet. This abrupt
change in direction leads to turbulent conditions. To reduce this turbulence, an 8 -ft by 8 -ft opening is to be cut within the baffle wall to allow the flow from the secondary effluent line to continue into the chlorine contact chamber. To accommodate the secondary maximum flow, the effluent weir is to be lowered to an ffluent of 24 . The existing effluent launder and collection box prove to be hydraulic bottlenecks. The effluent launder is to be modified by lowering the launder to an invert elevation of 243.0 and increasing the

Adams Field Wastewater Treatment Plant
City of Little Rock, Arkansas
CAPITAL IMPROVEMENT PLAN
OPTIONS

7าIHWZHS

$\stackrel{\text { 容 }}{\stackrel{\circ}{0}} \rightarrow$

$\sum_{\underset{N}{\mid}}^{\stackrel{1}{1}}$	NOILVIS dWกd LNE				

∞

$\frac{\text { NEW PRIMARY SLUDGE PUMP STATION AND PRIMARY SCUM PIT }}{1 / 4^{+}=1^{1}-0^{-}}$

Ни!
77IHWZHכ

าาІниz\%

CH2MHILL
NIS甘G NOILVYヨ ONV NOILVLS dWกd INヨחרヨコヨ גy甘WIyd
September 1998
B

MIXING CHAMBER SECTION B
$1 / A^{-}=1.1-0^{\circ}$

LPR
$\stackrel{\bullet}{\square}$

$\frac{\text { RAS PUMP STATION AND METER VAULT }}{3 / 6^{\circ}-100^{\circ}}$

НРННННР

QNV NOILVIS dWก̣ SVY

866l JequaŋdəS (suongdo) ueld ұиәшәлолдші [elydey x甘' dLMM prog surepy

$\stackrel{\infty}{\sim}$

SODIUM HYPOCHLORITE
FEED SYSTEM
SCALE $1 / 8^{\circ}=1^{\circ}$

$\frac{\text { SECTION A }}{\text { WIS }}$

EFFLUENT WEIR BOX

Adams Field Wastewater Treatment Plant
City of Little Rock, Arkansas
CAPITAL IMPROVEMENT PLAN
OPTIONS

2) ~.22nnill - Conceptual Design Cost Estimate Adams Field Wastewater Treatment Plant Littie Rock Wastewater Utility for the City of Little Rock, Arkansas Project No: 147367.A0.CP

[^1]| Givision 2 Sitowork | 維aty | | QMateral | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Surctural Excavation | 632 | $\xrightarrow[\mathrm{Cr}]{\mathrm{Cr}}$ | \$12.60 | 0.044 | $\begin{aligned} & \$ 6832 \\ & \$ 35.49 \end{aligned}$ | $\begin{array}{r} \$ 3.01 \\ \$ 19.70 \end{array}$ | $\stackrel{\$ 1,899}{\$ 664}$ |
| Gravel Fill Under Slab | ${ }_{461}^{34}$ | | | 0.2000.250 | | | |
| Comfined Native Backerill | | Cr | | | \$35.49 | \$19.70 | |
| Houl Excess Material OH Site for Disposal | 171 | Cr | | 0.025 | \$102.37 | ${ }^{\$ 8.87}$ | \$4,089 |
| Guard Post w/Concrete Fill | | | \$287.00 | 1.6000.200 | \$35.49 | \$343.78 | \$1,719 $\mathbf{\$ 5 8 0}$ |
| Sand Fill of Vold Areas | 29 | CY | \$12.60 | | \$35.49$\$ 47.74$ | $\begin{gathered} \$ 19.70 \\ \$ 763.84 \end{gathered}$ | |
| Demo Rernove Concrete F | 1 | | | 0.200 16.000 | | | \$1,528 |
| Domo/Remove Concrete | | Cr | \$0.42 | 1.5000.026 | \$47.74 | \$71.61 | |
| Sanoblast Exist Concrete Surlace | 91857 | SF | | | \20.87\mathbf{\$ 3 9 . 0 7}$ | \$0.97 | \$44 $\$ 889$ |
| Remove Existing Grating | | SF | | ${ }_{0}^{0.026}$ | | \$1.03 | $\begin{array}{r}\text { \$889 } \\ \$ 58 \\ \hline\end{array}$ |
| Rermove Existing Stalmay, 10 Riser wHR OS | | | | | 0.176 | \$39,07 | \$547.96 | \548\$ 497$ |
| Romova Exist Handrall | 71 | LF | | \$39.07 | | \$56.86 | | |
| Romove Exist Mechanical Cleaned Ear Screen | | EA | | 650.0000.336 | $\begin{aligned} & \$ 43.01 \\ & \$ 40.17 \end{aligned}$ | \$27,956.50 | \$55.913 | |
| Saweut Exist Concrete Slab a* | 36 | LF | \$3.04 | | | \$16.54 | ${ }_{5595}$ | |
| | 5\% Allowance: Misc Materials \& llems Required Etc | | | | | | 53,472 | |
| division 3 Concrote | Subtolal Division 2 | | | | \$72,922 | | | |
| Exlst Structure | | | | | | | | |
| Ralso Exist Stucturo Watl 8^{*} | ${ }^{10.6}$ cr | Cr | \$129.34 | 8.160 | \$22.15 | \$310.08 | \$3,289 | |
| Revised Sluice Gate Wall 12^{-} | | CY | \$107.56 | 5.5801.280 | | | | |
| Now Stucture Floor Slab 6^{*} | 8.3 | Cr | | | \$20.20 | ${ }_{\text {S }}^{\$ 236.46}$ | ${ }_{\$ 805}^{\$ 830}$ | |
| Stmeture Column Support $24^{4} \times 24^{\text {a }}$ | 16.612.7 | ${ }_{\text {cr }}^{\text {cr }}$ | \$108.96 | 6.080 | \$22.15 | | \$ $\mathbf{\$ 4 0 0 5}$ | |
| Stueture Baam Support $20^{\circ} \mathrm{w} \times 30^{\prime \prime} \mathrm{d}$ | | | \$102.46 | 7.350 | \$22.15 | \$265.36 | $\begin{aligned} & \$ 3,363 \\ & \$ 4,064 \end{aligned}$ | |
| Structura Perimeler Beam $24^{\prime} \mathrm{w} \times 11^{\text {d }} \mathrm{d}$ | 8.6 Cr | | \$129.34 | 15.370 | \$22.15 | | | |
| Bidg Parapet Wall 8° | 2.9 CY | | | | | \$473.30 | \$892. | |
| Main Building Elev Slab B° | 42.7 | ${ }_{\text {Cr }}^{\mathrm{Cr}}$ | \$95.87 | 3.210 | \$22.15 | \$166.97 | $\$ 7,127$$\$ 954$ | |
| | 3.27.2 | $\begin{aligned} & \mathrm{cr} \\ & \mathrm{cr} \end{aligned}$ | $\begin{array}{r} \$ 106,23 \\ \$ 95.87 \end{array}$ | $\begin{aligned} & 8.120 \\ & 3.210 \end{aligned}$ | \$22.15 | \$286.97 | | |
| | | | | | | | \$1,202 | |
| Stucture Footing Slab $24{ }^{\text {a }}$ | 22.1 | Cr | \$64.16 | 0.460 | \$20.20 | \$73.45 | \$7,621 | |
| Stucturo Fooling Wall 24° | 59.9 | Cr | $\begin{aligned} & \$ 85.49 \\ & \$ 65.23 \end{aligned}$ | 3.250 | $\$ \$ 2.15$ | $\begin{aligned} & \$ 157.48 \\ & \$ 79.37 \end{aligned}$ | \$9,425 | |
| Sincture Slab ${ }^{12^{*}}$ | 67.416.5cc | Cr
 Cr | | | | | | |
| Equipmont Pad 10* | | | $\begin{array}{r} \$ 67.18 \\ \$ 108.96 \end{array}$ | 0.810 | $\begin{aligned} & \$ 20.20 \\ & \$ 20.20 \end{aligned}$ | \$83,54 | \$51,377 | |
| Structuro Column Suppori $24^{*} \times 24^{*}$ | 58.993.7 | $\mathrm{Cr}_{\mathrm{Cr}}^{\mathrm{Cr}}$ | | 6.080 | \$22.15 | \$24.63$\$ 265.26$$\mathbf{8}$ | ($\$ 14,347$
 $\$ 24,857$ | |
| Structuro Boom Support $20{ }^{\circ} \mathrm{w} \times 30^{\circ} \mathrm{d}$ | | | $\begin{aligned} & \$ 108.96 \\ & \$ 102.46 \end{aligned}$ | 7.350 | \$2215 | | | |
| Main Building Eliev Slab $\mathbf{8}^{*}$ | 54.2 | $\begin{aligned} & \mathrm{CY} \\ & \mathrm{CY} \end{aligned}$ | $\begin{aligned} & \$ 95.87 \\ & \$ 70.60 \end{aligned}$ | 3.210 | | \$166.97 | | |
| | | | | 1.280 | \$2020 | $\underset{\$ 96.46}{ }$ | $\$ 179$$\$ 418$ | |
| Forms - 10^{+} | | ${ }_{\text {LF }}^{\text {LF }}$ | $\begin{aligned} & \$ 0.20 \\ & \$ 1.20 \end{aligned}$ | 0.060 | \$36.25 | | | |
| forms - $24^{\text {- }}$ | | | | 0.100 | \$36.25 | \$4.83 | \$965 | |
| 6^{6} Waterstop - Horizontal | 596 | LF | $\begin{aligned} & \$ 1.39 \\ & \$ 2.87 \end{aligned}$ | 0.120 | \$36.25 | $\begin{aligned} & \$ 5.74 \\ & \$ 5.05 \end{aligned}$ | $\begin{array}{r}\$ 3,421 \\ \$ 101 \\ \hline 8.9\end{array}$ | |
| 5^{6} Waterstop - Verrica! | $\begin{array}{ll} 20 & \mathrm{LF} \\ 90 & \mathrm{~F} \end{array}$ | $\frac{L F}{L F}$ | $\begin{aligned} & \$ 2.87 \\ & \$ 2.87 \end{aligned}$ | ${ }^{0.060}$ | \$36.25 | $\begin{aligned} & \$ 5.05 \\ & \$ 5.77 \end{aligned}$ | | |
| njoctable/expandablo Waterstop | 236 LF | | \$4.35 | 0.120 | \$36.25 | $\begin{aligned} & \$ 5.77 \\ & \$ 8.70 \end{aligned}$ | \$519 | |
| Drill \& Dowel Exis Concreat for Rebay Anchor | | | 0.080 | 546.44 | \$6.59 | \$2,529 | | |
| Reinforcement Stoel Mechanical Placement | 85,915 | LB | | ${ }^{90.28}$ | 0.007 | \$46.44 | 50.61 | \$51,985 |
| Finish-Slab | 490.9 | ${ }_{\text {Cr }}$ | | 0.075 | \$10210 | \$7.66 | \$3,759 | |
| Finish. Wall | 12,202 | SF | \$0.10 | ${ }_{0}^{0.020}$ | \$24,46 | \$0.49 | \$3,619 | |
| Precast Concrete Wail Panal | 3,047 | SF | \$2.76 | 0.093 | \$ $\$ 61.45$ | \$8.47 | $\$ 11,666$ $\$ 25,823$ | |
| | 5\% | Allowar | Embedded | utting/Tou | Os/EIC | | \$9,982 | |
| division 4 Masonry | Subtotal | alvis | | | \$209,614 | | | |
| Common cmu 8° | 2,761 | SF | \$1,45 | 0.136 | \$34.95 | 56.20 | | |
| Reintorcement Sleel | 2,485 | LB | \$0.28 | 0.008 | \$34.95 | S0.56 | \$1,391 | |
| Sorid Grout fill of Cells | 36 | Cr | \$50.00 | 1.150 | 534.95 | \$90,19 | \$3,228 | |
| Bra Veneet | 2,995 | SF | \$2.46 | 0,182 | \$34.95 | S8,82 | \$26,419 | |
| | 5\% | Allowar | mbedded I | utting 7° ou | ps/EIc | | \$2,40日 | |
| DIVISION 5 Metats | Subtola | Divis | | | \$50,572 | | | |

- Conceptual Design Cost Estimate											
Adams Field Uittie Rock Wastewater Utility						Original Date	15-Sep-98				
Little Rock Wastewater Utility tor the city of Little Rock, Arkansas						Revised Date	15-Sep-98				
Preparad ly: R Lawson/RDO	Raw Sewage Pump Building Modifications										
Prolect No: 14736.A0.CP											
Saweun Exist Concroto Wail 8^{*}	72	LF	53.28	1.600	\$20.29	\$35.74	\$2,574				
DemaRRemove Concreele		CY		1.500	547.74	571.61	\$269				
Sanoblast Exist Concrete Surface	90	SF	\$0.42	0.026	\$20.87	\$0.97	\$87				
Remowe Existing Grating		SF		0.026	\$39.07	\$1.03	\$432				
Remove Exist Raw Sewage Pump/Shat/Motor		EA	53.36	170.000	\$43.01	\$7,311.70	\$14,623				
Figd 90 Elbow	2	EA		3.375	\$37.58	\$126,83	\$254				
$16{ }^{\text {16 AS DI Piping }}$											
Fligd 90 Elbow	2	EA		5.025	\$37.5日	\$188.84	\$378				
$\times 12^{*}$ Flgd Reducer		EA		5.025	\$37.58	\$188.84	5755				
Flgd Gate Valve		EA		18.000	\$37.58	\$676.44	\$2,706				
Flex Coupling w/Thrust Ties		EA		5.063	\$37.58	\$190,25	\$761				
$\times 1^{1-6} 6^{\circ} \mathrm{FXPE}$ Spoor		EA		3.591	\$37.58	\$134,95	\$270				
$\times 2^{\prime}-0^{\circ} \mathrm{F} \times \mathrm{PE}$ Spool		EA		3.708	\$37.58	\$139.35	5557				
\times 3. 0° F F XPE Spool		EA		3.942	\$37.58	\$148.14	\$296				
24* RS DI Piping											
Flid 90 Elbow	1	EA		13.71	\$37.58	\$517.50	\$518				
$\times 16^{\circ} \mathrm{Flgd} 90$ Elbow		EA		13.71	537.58	\$517.50	\$1,035				
Flgd Tee	2	EA		23.087	\$37.58	\$867.59	\$1,735				
Figd Gale Valve		EA		36.000	\$37.58	\$1,352.88	\$2,706				
		EA		7.023	\$377.58	\$263.92	${ }^{\mathbf{5} 228}$				
		EA		7.422	\$377.58	\$278.92	\$279				
$\times 24^{4}$ Flgd Reducer	1	EA		29.745	\$37.58	\$1,117.82	\$1,118				
	5\%	Allowa	ce: Misc Materi	nems Requ			\$1,691				
division 5 Metats											
		LF	\$425	0.125	\$39.07	\$9.13	\$1,370				
		EA	\$2,500.00	24.000	\$39.07	\$3,437.68	\$10,313				
	5\%	Allowar	ce: Misc Nuts/E	onnecllons			\$993				
OIVISION 9 Finsthes	Subtotal Divislon 5				\$20,846						
Painting Ccalings Alowance	1.5\%					\$1,372,781	\$20,592				
	Subtotal Division 9				520,592						
Raw Sowago Pump/Shationivo 30 mg d Raw Sewage Pump VFD Unit Concentrated Scum Pump w/Guide Rails	2	EA	\$200,000.00	470.000	\$43.01	\$220,214,70	\$440,429				
		EA	\$185,000.00	430.000	\$43.01	\$203,494,30	\$406,989				
		EA	\$17,675.00	72.000	\$43.01	\$20,71.72	\$62,315				
Concentrated Scum Pump w/Guide Rails	5\% Allowance: Misc Attachment Materials \& flems Elc						\$45,487				
division 13 Special Construetion	Subtolal Division 11				5955,220						
		EA	\$21,000,00	48.000	\$37.58	\$22,803,84	\$68,412				
	10\% Allowance: Clips/Hangers/Silraps/Supports/Misc Etc						\$6,841.15				
	Sublotal Division 13				\$75,253						
24^{*} RS of Piping											
Figd Plug Valve		EA	\$13,300,00	48.000	\$37.58	\$15,103,84	\$30,20日				
Flanged Coupling Adaptor w/Thrust Ties		EA	\$1,221,00	7.000	\$37.58	\$1,484,06	\$1,484				
$\times 17^{\circ} .0^{\circ}$ F XPE Wall Spool 30^{*} RS OI Piping		EA	\$2.096.00	13.875	\$37.58	\$2,617.42	\$2.617				

enarvn- - Conceptual Design Cost Estimate

$\text { ouision } 2 \text { Stowork }$ 寧			部Matont											
Simen Exsit Concroto Wail 10°		LF	54.10	2.000	\$2029									
DomorRemovo Concrete		CY		1.500	\$20.29	\$44.68	\$2,725 S455							
Sanoblast Exist Concrele Surface	41	SF	\$0.42	${ }^{1} 0.026$	\$ $\$ 47.74$	$\$ 71.61$ $\$ 0.97$	$\begin{array}{r}5455 \\ 539 \\ \hline\end{array}$							
- Romovo Existing Grating		SF		0.026	\$ $\$ 39.07$	$\$ 0.97$ $\$ 103$	\$39							
Domo/Remove Exist PS Pumps/Pipe/Frtings Stuctural Excavation	1	LS		72.000	${ }_{\text {\$43.01 }}{ }^{\$ 39.07}$	- $\begin{array}{r}\text { \$1.03 } \\ \$ 3,096.72\end{array}$	516 187							
(Sty	251	Cr		0.044	\$44.17	\$3,096.72	3,097							
Contined Native Eackfill		$\mathrm{Cr}_{\mathrm{Cr}}$	\$12,60	0.200	\$35.49	\$19.70	\$488							
Haut On Site Excess Excavaled Material		Cr		0.250	\$35.49	\$8.87	\$1,336							
Coro Exist 16. Wall lor New 6" Pipe		EA		0.025	\$102.37	\$2.56	\$257							
			\$39.26	4.076	\$19.32	\$118.00	\$118							
	5\% Allowance: Misce Materials \& ltems Required EtcSubtotal Division $2 \quad \$ 8,976$													
drvision 3 Concrete														
Structuro Slab ${ }^{\text {180}}$		${ }_{\text {Cr }}$	\$64.52	1.8600.460	\$20.20	\$166.97	${ }^{\$ 97}$							
Stincture Wall 10°						\$12.47	- $\begin{array}{r}\text { \$187 } \\ \mathbf{\$ 1 , 6 9 5} \\ \hline\end{array}$							
Grant fill (Alll hree Scum Pits)		Cr	\$ $\$ 182.56$	5.580	\$22.15	\$231.16	\$1,895$\mathbf{\$ 3 0 2}$							
Slab Forns ${ }^{\text {S }}$ (18.		LF	\$1.84	-0.308	\$22.15 $\$ 36.25$	$\$ 100.76$ $\$ 13.01$								
${ }^{\text {Staberen }}$		LF	\$0.20	0.060	\$36.25		\$273							
Injectable/opxandabla Waterstoo		LF	\$2.87	0.060	\$336.25		$\$ 21$ $\$ 91$							
Drill \& Dowel Exist Concreto for Rebar Anchor		LF	\$4.35			\$9.70	\$313							
Aoinforcment Steel	2,542	EA	$\begin{aligned} & \$ 2.87 \\ & \$ 0.28 \end{aligned}$	0.080	\$46.44									
Mechanical Placement	2,542 14.5	cr		0.0070.075	$\$ 46.44$$\$ 102.10$	\$0.61	\$51,539							
Finish - Slab	152533	cy	\$0.10			\$7.66	\$111							
Frish - Wall		SF		0.020	\24.46\$ 24.46$	$\begin{aligned} & \$ 0.49 \\ & \$ 0.96 \end{aligned}$	\$574							
				0.035										
	5\% Allowance: Embedded liems/Cutting/Touch-Ups Etc						\$302							
DIVISION 5 Metals	Subtotal Divislon 3				\$6,336									
Aluminum Accoss Hatch $4^{\prime} \times 4^{4}$ Auminum Starimay 4 Risisor w/ir 0 OS Aluminum Accoss Hatho $4^{4} \times 4^{\circ}$			$\begin{array}{r} \$ 775.00 \\ \$ 1.150 .00 \end{array}$	$\begin{aligned} & 7.480 \\ & 4.000 \end{aligned}$	$\begin{aligned} & \$ 39.07 \\ & \$ 39.07 \end{aligned}$	$\begin{aligned} & \$ 1,067.24 \\ & \$ 1,306.28 \end{aligned}$								
							$\begin{aligned} & \$ 1,067 \\ & \$ 1,306 \end{aligned}$							
Divion ${ }^{\text {din }}$ (inistos	5\% Allowance: Misc Nus/Bolls/Connections Elc						\$119							
	Sublotal Division 5				\$2,492	\$280,393	\$7,010							
	2.5\%													
Division 11 Equipment	Sublotal Division 9			$\begin{aligned} & 72.000 \\ & 72.000 \end{aligned}$	\$7,010	\$23,096.72	$\begin{array}{\|} \$ 92,387 \\ \$ 62,315 \end{array}$							
तrsudgo Pump			$\begin{aligned} & \$ 20,000.00 \\ & \$ 17,675.00 \end{aligned}$		$\begin{aligned} & \$ 43.01 \\ & \$ 43.01 \end{aligned}$									
cum Pump w/Guide Ralls		,												
	5\% Allowance: Misc Connection Malerials \& Hems Etc						7,735							
IVISION 13 Speciat Construction	Subrotal Divislon 11			\$162,437			$\$ 11,402$$\$ 705$\%							
4 Flow El	3 E		\$3,500.00	8.000	\$37.58									
4 Pressure Gauge						\$3,800.64								
7 Pressure Switch	4			1500	\$37.58	\$176.37								
9 Pressure Transmiter	1 E		$\$ 399500$ $\$ 1,150,00$	3.0004.000	\37.58\$ 3758$$\$ 3758$		\$2,031							
Contol Panel ${ }^{\text {a }}$			$\begin{array}{r} \$ 750,00 \\ \$ 3,500,00 \end{array}$			$\begin{array}{r} \$ 1,300.32 \\ \$ 975.48 \end{array}$	$\$ 1,300$ \$3,626							
	E				\37.58\$ 31.61$									
						\$3,626.44								
	10\% Allowance: Clips/Hangers/Straps/SupportsMisc Etc						\$2,297							
VIISION 15 Mechanical	Subtotal Division 13				\$25,264									
- PSipsoum Piping														
Figd 90 Elbow	EA	\$721.00		1.270	S37.58	5769,73	\$2,305							

- chavninio- - Conceptual Design Cost Estimate

$\begin{array}{ll}\text { Chzannur } \quad \text { - Conceptual Design Cost Estimate } \\ \text { Adams Field W } & \text { ter Treatment Plant }\end{array}$

9/15/98 2:23 PM

[^2]
Preliminary Evaluation of the Fourche Creek WWTP

PREPARED FOR:
prepared by:
COPIES:
Little Rock Wastewater Utility
Linda Ferguson, CG\&S
Bob Blanz, CH2M HILL
Glen Daigger, CH2M HILL
Mike Guthrie, CH2M HILL
Bob Lawson, CH2M HILL
DATE: \quad February 19, 1999

Task Objective

The Little Rock Wastewater Utility (LRWU) is planning to upgrade the Adams Field WWTP to rectify operation and maintenance limitations, improve treatment efficiency and increase the hydraulic capacity of the existing facility. Prior to starting the design effort on the proposed upgrades at Adams Field, LRWU has asked us to perform a preliminary evaluation of the Fourche Creek WWTP to determine if increasing the hydraulic capacity of this facility is a cost-effective method of reducing the hydraulic loading to the Adams Field facility.

The specific objectives of this task are:

- to perform a hydraulic throughput capacity evaluation of the Fourche Creek WWTP
- to provide an order of magnitude cost estimate of the upgrades required to increase the maximum hydraulic throughput capacity of the facility from 38 to 60 mgd (22 -mgd increase)

This technical memorandum summarizes the results of the hydraulic evaluation and order-of-magnitude cost estimate to increase the hydraulic throughput capacity of the Fourche Creek facility.

Hydraulic Throughput Evaluation

WinHYDRO, a computer model that facilitates complex analysis of plant hydraulics, was used to evaluate the hydraulic characteristics of the Fourche Creek WWTP. Hydraulic and energy gradelines from the chlorine contact chamber overflow weir to the primary effluent pump station and from the primary effluent pump station to the plant headworks outfall were developed for the current peak (38 mgd) and the potential future peak (60 mgd) flow conditions. Hydraulic bottlenecks that limit the hydraulic throughput capacity of the existing facilities and flow distribution problems were identified and evaluated. The hydraulic throughput capacity of each unit process was determined.

Modeling Methodology

A hydraulic model of the existing facilities at the Fourche Creek WWTP was prepared using WinHYDRO, the CH2M HILL hydraulic modeling software package. It is a steady-state hydraulic modeling tool that performs a series of backwater calculations to determine the hydraulic grade line (HGL) and energy grade line (EGL) through the plant under different hydraulic loading conditions.

The model was constructed by entering the physical dimensions of each hydraulic element, starting at the receiving water elevation and moving upstream throughout the plant. The physical dimensions were obtained from the record drawings for the facility. A field survey was performed to confirm the elevations of key hydraulic control elements (e.g. weir elevations) and to establish a series of benchmarks at key locations through the facility.

The model was calibrated using the measured water surface levels at key locations under three flow conditions. Table 1 summarizes the flow rates and tanks in service during the three hydraulic surveys. The flow was measured using the existing influent, effluent, and RAS flow meters. The water surface levels were obtained by measuring down to the water surface level from the benchmarks established in the hydraulic survey.
The elevations of the hydraulic control structures were modified based on the survey results, and the hydraulic element minor loss coefficients were adjusted so that the water surface levels predicted by the model corresponded to the measured water surface levels. The calibrated model was then used to determine the hydraulic throughput capacity of each unit process.

TABLE 1
Adams Field WWTP Evaluation - Hydraulic Survey

Date	Time	Flow (mgd)	RAS (mgd)	Basins in Service
January 12	$13: 00-14: 30$	Influent -14 to 6 Effluent -13 to 9	6.9	All
January 13	$9: 45-11: 15$	Influent -22 to 4 Effluent -13 to 9	3.3	1 primary clarifier 1 aeration basin 1 secondary clarifier
January 13	$13: 00-14: 15$	Influent -22 to 1 Effluent -16 to 8	6.9	All

Physical Structures Survey Results

Table 2 presents a summary of the survey results; the detailed level measurements are located in Appendix A. In general, the difference between the surveyed concrete elevations and the record drawings for the facility were less than $+/-0.10$ feet. The small difference measured is likely the result of variation in concrete surface finish and slope on walkways and concrete floor slabs to provide surface drainage. Areas where the difference between the surveyed and record drawing elevations is greater than $+/-0.10$ feet are discussed below.

Table 2
Fourche Creek WWTP Evaluation - Survey Results

Unit Process	Measured Elevation (ft)	Drawing Elevation (ft)	Difference (ft)
Chlorine Contact Chamber			
Top of floor slab	251.48	251.50	-0.02
Overflow weir	248.81	248.83	-0.02
Secondary Clarifier			
Top of wall	252.89	253.00	-0.11
Launder invert	249.02	249.04	-0.02
Weir	250.70	250.50	+0.20
Aeration Basin			
Influent channel - south	252.94	253.00	-0.06
Influent channel - north	252.93	253.00	-0.07
Primary Effluent Pump Station			
Wet well	258.07	258.00	+ 0.07
Top of concrete approach channel	252.98	253.00	-0.02
Top of concrete primary effluent channel	252.62	253.00	-0.38
Primary Clarifier			
Top of concrete walkway		253.00	
Launder invert	250.19	249.16	+1.03
Weir	251.67	251.50	+0.17
Primary Clarifier Influent Channel			
Top of wall - downstream	253.02	253.00	+ 0.02
Top of wall - at roadway	257.22	257.21	+ 0.01
Detritor Parshal flume approach channel invert	252.31	252.27	+ 0.03
Top of grating channel	257.21	257.21	0.00
Screen Chamber	259.23	259.21	+ 0.02
Top of grating effluent channel Top of grating influent channel	257.22	257.21	+ 0.01

Secondary Clarifier Weir

The surveyed elevation of the secondary clarifier weir plate was 0.20 feet greater than the elevation presented in the record drawings. The difference between the surveyed and record drawing elevations varied between 0.18 and 0.22 feet, with an average difference of 0.20 feet. The surveyed weir elevations are based on the top-of-weir plate, whereas the record drawing elevations are based on the bottom of V-notch. The depth of V-notch is 3
inches, therefore the surveyed elevation for the bottom of the V-notch is 250.45 feet. The measured survey elevation was used in the calibrated model.

Primary Clarifier Effluent Channel

The surveyed top-of-grating elevation of the primary clarifier effluent channel was 0.38 feet lower than the elevation indicated on the record drawings. This channel was modified during the construction of the primary effluent pump station. The surveyed top of grating elevation was used to determine the maximum hydraulic throughput of the channel section.

Primary Clarifier Launder

The surveyed invert elevation of the primary clarifiers launders was 1.03 feet higher than the elevation indicated on the record drawings. The survey launder invert elevation of 250.19 was used in the calibrated model.

Primary Clarifier Weir

The surveyed elevation of the primary clarifier weir plate was 0.17 feet higher than the elevation indicated in the record drawings. The difference between the surveyed and record drawing elevations varied between 0.16 and 0.19 feet, with an average difference of 0.17 feet. The surveyed weir elevations are based on the top-of-weir plate, whereas the record drawing elevations are based on the bottom of V-notch. The depth of V-notch is 3 inches, therefore the surveyed elevation for the bottom of the V-notch is 251.42 feet. The measured survey elevation was used in the calibrated model.

Model Calibration

Figure 1 presents the influent and effluent flow measured during the three survey periods. The flow varied significantly during all three surveys. This is a result of the on-off operation of the College Sewage Pump Station (SPS).

During Survey 1 the flow measured by the influent flow meter varied from 6 to 14 mgd on a 9 -minute cycle during the first 40 minutes of the survey. The flow measured by the effluent flow meter did not vary significantly and averaged approximately 10 mgd over the same time period.

During Survey 2 the flow measured by the influent flow meter varied from 10 to 22 mgd on a 12 -minute cycle during the first 35 minutes of the survey. During the remainder of the survey, flow averaged 3 mgd except for a brief low of 4 mgd at 10:35 am and a brief high of 23 mgd at $10: 45 \mathrm{am}$. The flow measured by the effluent flow meter did not vary significantly and averaged 12 mgd .

During Survey 3 the flow measured by the influent flow meter varied from 2 mgd to 23 mgd on an approximate 10 -minute cycle. The flow measured by the effluent flow meter also varied, but the variations were less extreme and lagged the influent fluctuations by approximately 6 minutes.
The time difference between the peak flows measured by the influent and effluent meters attenuation of the peak flows measured by the effluent meters is associated with the hydraulic storage within the system. A significant portion of this will likely occur at the primary effluent pump station wet well. Therefore the flow measured by the effluent flow
meter is more representative of the flow through the secondary treatment system, and the flow measured by the influent meter is more representative of the flow through preliminary and primary treatment. Table 3 presents a summary of the measured plant flow and flows used to calibrate the model for each survey period.

Table 3
Fourche Creek WWTP Evaluation - Summary of Flows Used for Model Calibration

Location	Time	Measured Flow (mgd)	Calibration Flow (mgd)
Survey 1			
Chlorine contact chamber	$13: 10-13: 20$	$9.6-13.5$	$9,11,13$
Secondary clarifiers	$13: 20-13: 45$	$8.9-10.6$	$9,11,13$
Aeration basin	$13: 45-14: 00$	$10.8-12.8$	$9,11,13$
Primary clarifiers	$14: 00-14: 15$	$13.2-14$	13
Headworks	$14: 15-14: 20$	$13.2-14$	13
Survey 2			
Chlorine contact chamber	$9: 58-10: 10$	$10.8-12.5$	12
Secondary clarifiers	$10: 10-10: 30$	$11.4-12.9$	12
Aeration basin	$10: 30-10: 45$	$10.8-12.3$	12
Primary clarifiers	$10: 45-11: 00$	$10.4-21.5$	$10,13,22$
Headworks	$11: 00-11: 10$	$11.6-13.0$	$10,13,22$
Survey			
Chlorine contact chamber	$13: 05-13: 15$	$9.3-12.2$	$8,11,15$
Secondary clarifiers	$13: 15-13: 30$	$8.7-10.3$	$8,11,15$
Aeration basin	$13: 30-13: 40$	$10.3-15.0$	$8,11,15$
Primary clarifiers	$13: 40-13: 55$	$1.8-21.1$	$2,11,22$
Headworks	$13: 55-14: 05$	$2.2-21.6$	$2,11,22$

Figures 2 through 3 present a comparison of the measured water surface levels obtained during the survey to the water surface levels predicted by the calibrated model for the three surveys conducted. The detailed information used during calibration is presented in Appendix B. Table 4 summarizes the locations of the element sequence numbers used in these figures and in the tables in Appendix B.

In general, there was good agreement between the measured water surface levels and the water surface levels predicted by the model at the flow rates tested. However, the flow rate through the primary treatment system fluctuated significantly during Surveys 2 and 3 . In both cases, the measured water surface level was between the minimum and maximum predicted water surface levels for the range of flows measured.

TABLE 4
Fourche Creek WWTP Hydraulic Evaluation - Calibration Sequence Numbers

Process	Seq. Number	Description
Chlorine Contact	1	Downstream end of the contact chamber collection channel
Chamber	2	Chlorine contact chamber overflow weir
	3	Water surface level over weir
	4	Upstream end of the chlorine contact chamber
	5	Chlorine contact chamber bypass manhole

	6	Access hatch for the channel at old secondary clarifiers
Secondary Clarifier	7	Secondary clarifier combined collection channel
	8	Secondary clarifier combined collection channel
	9	Collection channel for each clarifier - downstream
	10	Collection channel for each clarifier - upstream
	11	Clarifier launder - downstream
	12	Clarifier launder at midpoint
	13	Clarifier body upstream at center walkway
	14	Clarifier influent channel
Aeration Basin	15	Aeration basin influent channel
Primary Clarifier	16	Primary effluent pump station wet well
	17	Channel to primary effluent pump station - downstream
	18	Primary clarifier combined collection channel - downstream
	19	Primary clarifier combined collection channel - mid-length
	20	Primary clarifier combined collection channel - upstream
	21	Primary clarifier launder at the outfall
	22	Primary clarifier launder at the upstream
	23	Primary clarifier body at influent
	24	Clarifier influent channel
Headworks	25	Channel to primary clarifiers at bend
	26	Channel to primary clarifiers at road
	27	Channel to primary clarifiers upstream of the Parshal flume
	28	Channel to primary clarifiers upstream of the grit chamber
	29	Downstream of the screens
	30	Upstream of the screens

Capacity Evaluation

The calibrated model was used to estimate the hydraulic throughput capacity of the existing facilities at the Fourche Creek WWTP. The predicted water surface level for each unit process was developed based on the assumption that the downstream hydraulic bottlenecks have been resolved. Table 5 summarizes the assumptions used and the capacity analysis for each section of the facility.

TABLE 5
Fourche Creek WWTP Hydraulic Evaluation - Summary of Hydraulic Throughput Capacity

Flow Path	Capacity	Assumptions
Plant oulfall	83 mgd	Starting point - the Arkansas River Arkansas River starting elevation - 244 feet Hydraulic exceedance - contact chamber overflow weir flooded
Chlorine contact chamber 50 mgd	Starting point - chlorine contact chamber weir (outfall not flooded) All (3) secondary clarifiers in service Hydraulic exceedance - clarifier effluent weir flooded Secondary	40 mgd
	Starting point - secondary clarifier overflow weir All (3) secondary clarifiers in service All (3) aeration basins in service Return activated sludge flow at 6.9 mgd (current maximum) Hydraulic exceedance - primary effluent pump discharge Metered line between pump station and aeration basin significant hydraulic bottleneck	

Primary effluent	45 mgd	Starting point - primary effluent pump station wet well pump station		
	Capacity of pumps not included in evaluation All (2) primary clarifiers in service Hydraulic exceedance - primary clarifier weir flooded Primary clarifier launders significant hydraulic bottleneck			
Primary				
treatment and				
headworks			$\quad 55 \mathrm{mgd} \quad$	Starting point - primary clarifier overflow weir
:---				

The following sections discuss the capacity evaluation for each unit process in more detail.

Plant Outfall

The hydraulic throughput capacity of the plant outfall is estimated to be 83 mgd with a water surface level in the Arkansas River of 244 ft (maximum water surface level indicated on drawings). The plant outfall model was not calibrated using measured river water surface levels. Therefore, the capacity estimate is based on standard friction coefficients and minor losses for the pipe material, age, and appurtenances in the outfall configuration.

Chlorine Contact Chamber

The hydraulic throughput capacity of the chlorine contact chamber and secondary clarifier collection channel is estimated to be 50 mgd . The hydraulic losses occurred in the full flow pipe between the secondary clarifiers and the chlorine contact chamber. The 72 -inch pipe between the secondary clarifiers and the chlorine contact chamber would need to be upgraded (replaced with an 84 -inch line or twinned) to accommodate the $60-\mathrm{mgd}$ flow. At $60-\mathrm{mgd}$ flow, the individual collection channels for the secondary clarifiers become a hydraulic bottleneck. Therefore, these collection channels would need to be replaced or additional secondary clarifiers provided.

Secondary Treatment

The hydraulic throughput capacity of the secondary clarifiers and aeration basin is estimated to be 40 mgd . At flow rates greater than 40 mgd , the water surface level in the chamber downstream of the primary effluent pumps exceeds the invert of the pump discharge. Most of the headlosses occur in the full flow pipe between the primary effluent pump station and the aeration basin.

The capacity of the secondary clarifier and aeration basin can be increased to 60 mgd if the hydraulic bottleneck of the full flow pipe (metered line) were reduced. There is a second metered line from the primary effluent pump station to the abandoned RBC facility that could be used to increase the hydraulic throughput capacity of the secondary treatment system. This would require rerouting the existing pipe to the aeration basin influent channel.

Primary Clarifier Collection Channel

The hydraulic throughput capacity of the primary clarifier collection channel is estimated to be 45 mgd . At flow rates greater than 45 mgd , the primary effluent weir is flooded. Most of
the hydraulic losses occur in the primary clarifier effluent channel. This channel would need to be increased to 72 inches to accommodate the 60 mgd flow. At 60 mgd flow, the finger launders in the primary clarifier become a hydraulic bottleneck. Therefore the finger launders would need to be replaced or additional primary clarifiers provided.

Primary Clarifiers and Headworks

The hydraulic throughput capacity of the primary clarifiers and headworks is estimated to be 55 mgd . At flow rates greater than 55 mgd the water surface level in the channel upstream of the grit chamber is greater than the top-of-concrete level for the channel wall. Significant hydraulic losses occur at the grit chamber influent and effluent gates. At a flow rate of 60 mgd , the water surface level in the channel between the primary clarifier and roadway will also be overtopped. To accommodate a flow rate of 60 mgd , the channel between the screen chamber and primary clarifiers would need to be upgraded. This upgrade would include increasing the wall height of the channel between the primary clarifiers and the roadway, providing an additional grit chamber, and increasing the wall height of the channel between the grit chamber and the screen channel.

Order of Magnitude Cost Estimate

An order-of-magnitude cost estimate was prepared for the upgrades required to increase the maximum hydraulic treatment capacity of the Fourche Creek WWTP from 38 to 60 mgd . The order-of-magnitude cost estimate will be used to evaluate if upgrading the Fourche Creek facility is a cost-effective method of relieving the hydraulic loading to the Adams Field WWTP during wet-weather-flow conditions. The cost estimates are preliminary and should be used for comparison purposes only.

The upgrade includes work required in the collection system to transport the additional flow to the Fourche Creek facility and the work required at Fourche Creek to treat the additional flow. Table 6 summarizes required upgrades and estimated capital costs. The basis of design and capital cost worksheets are located in Appendix C.

Collection System Upgrades

The Fourche Creek collection system consists of a 42-inch force main from the Arch Street to the College Station Sewage Pump Station (SPS) and a 42 -inch force main from College Station SPS to the Fourche Creek WWTP. The current peak hydraulic capacity of the two force mains and associated pumping stations is 38 mgd .

The work required to increase the peak hydraulic capacity of the collection system includes

- providing a new 30 -inch force main to operate in parallel with the existing 42 -inch force main
- providing three new pumps complete with VSD
- replacing the existing screens at the Arch Street SPS
- modifying the College Station SPS to pump contributory flow into the new pump station

The order-of-magnitude cost for performing this work is approximately $\$ 12,600,000$.

Fourche Creek WWTP Upgrades

Preliminary treatment at the Fourche Creek WWTP consists of two mechanically cleaned bar racks and a centrifugal grit removal system. The existing bar screens are in poor condition and should be replaced in the near future. The work required to increase the hydraulic capacity of the preliminary treatment system includes:

- Provide three new mechanical screens
- Provide additional grit removal tank
- Provide grit washing system

The Fourche Creek WWTP has two primary treatment tanks equipped with traveling bridge sludge removal mechanisms. The sludge removal system requires a lot of maintenance to keep in service and should be replaced in the near future. An additional primary clarifier is required to increase the hydraulic capacity of the primary treatment system. One of the abandoned RBC secondary clarifiers could be brought back into service as a primary clarifier. The work required to upgrade the primary treatment system includes:

- Provide a diversion pipe to the RBC secondary clarifier
- Modify clarifiers to accommodate new sludge removal mechanisms
- Replace the traveling bridge sludge removal mechanism with chain and flight (three passes per tank)
- Upgrade existing primary sludge pump stations

The Fourche Creek WWTP has two Archimedes' screw primary effluent pumps with a rated capacity of 50 mgd each. A third primary effluent pump would be required to provide a firm capacity (one pump out of service) of 60 mgd for the facility. The primary effluent flow meter and associated piping is a significant hydraulic bottleneck. An additional meter would be required under high-flow conditions. The abandoned RBC flow meter and meter chamber could be brought into service. The work required to upgrade the primary effluent pump station includes:

- Provide a new primary effluent pump
- Modify the RBC flow meter piping

The secondary treatment system consists of three (3) four-pass step feed aeration basins followed by three (3) two-bay rectangular secondary clarifiers with a chain and flight and a central hopper sludge removal system. Two additional aeration basins and secondary clarifiers are required to increase the hydraulic capacity of the secondary treatment system to 60 mgd . The existing blowers and blower building are sufficient to meet the air requirements of the additional aeration basins. The work required to upgrade the secondary treatment system includes:

- Provide two new aeration basins and associated aeration equipment
- Provide two new secondary clarifiers and associated sludge removal mechanisms
- Extend pipe gallery to accommodate the new aeration basins and clarifiers
- Provide four additional RAS/WAS pumps

The order-of-magnitude cost for performing this work is approximately $\$ 23,400,000$.

Table 6
Fourche Creek WWTP - Capital Upgrades Required to Increase Capacity to 60 mgd

Process	Upgrades	$\begin{gathered} \text { Cost } \\ (\$ 000) \end{gathered}$
Force main	30" force main $L=41,500^{\circ}$	\$9,716
Arch Street SPS	3 new pumps VSD 1 screen	\$2,922
Fourche Creek	3 screens 1 grit tank and washer modify existing clarifier structure replace primary clarifier mechanisms replace primary sludge pump station 1 primary effluent pump 2 aeration basins 2 secondary clarifiers misc. piping modifications and site work	\$23,422
Total		\$36.065

Figures

Figure 1c: Fourche Creek WWTP - Influent and Effluent Flow during Survey 3 January 13, 1999-13:00 to 14:15

Time

Chart - Survey 1 cal
Survey elevations.XLS

Chart - Survey 2 cal
Survey elevations.XLS

Chart - Survey 2 cal (2)
Survey elevations.XLS

APPENDIX A
Hydraulic Model Calibration
roulcile creek wavir
Hydraulic Model Calibration Survey Locations

rourcne Lreek wwir
Hydraulic Model Calibration
Survey Locations

Location Number	Location			Difference in Elovation
133	Clarifier 1 launder bottom at point B	249.048	249.04	0.008
134	Clarifier 1 weir at point B	250.718	250.5	0.218
135	Clarifier 1 weir at point B	250.713	250.5	0.213
136	Clarifier 1 launder - TOC on walkway point C	252.868	253	-0.132
137	Clarifier 1 launder bottom at point C	249.008	249.04	-0.032
138	Clarifier 1 weir at point C	250.698	250.5	0.198
139	Clarifier 1 weir at point C	250.698	250.5	0.198
140	Clarifier 1 launder - TOC on walkway point D	252.898	253	-0.102
141	Clarifier 1 launder bottom at point D	249.013	249.04	-0.027
142	Clarifier 1 weir at point D	250.703	250.5	0.203
143	Clarifier 1 weir at point D	250.708	250.5	0.208
144	Clarifier 1 launder - TOC on walkway point E	252.848	253	-0.152
145	Clarifier 1 launder bottom at point E	249.028	249.04	-0.012
146	Clarifier 1 weir at point E	250.698	250.5	0.198
147	Clarifier 1 weir at point E	250.703	250.5	0.203
148	Clarifier 1 launder - TOC on walkway point F	252.828	253	-0.172
149	Clarifier 1 launder bottom at point F	248.998	249.04	-0.042
150	Clarifier 1 weir at point F	250.713	250.5	0.213
151	Clarifier 1 weir at point F	250.708	250.5	0.208
152	Clarifier 1 center walkway channel 1	252.87	253	-0.13
153	Clarifier 1 center walkway channel 2	252.878	253	-0.122
154	Clarifier 2 center walkway channel 1	252.883	253	-0.117
155	Clarifier 2 center walkway channel 2	252.843	253	-0.157
156	Clarifier 3 center walkway channel 1	252.856	253	-0.144
157	Clarifier 3 center walkway channel 2	252.82	253	-0.18
77	Clarifier 1 influent channel west TOC	252.918	253	-0.082
78	Clarifier 1 influent channel east TOC	252.958	253	-0.042
80	Clarifier 3 influent channel west TOC	252.928	253	-0.072
81	Clarifier 3 influent channel east TOC	252.908	253	-0.092
158	AERATION BASINS South influent channel downstream - TOC	252.958	253	-0.042
159	South influent channel corner - roc	252.968	253	-0.032

rourcne Creek wWIr
Hydraulic Model Calibration
Survey Locations

Location Number			Design Elovation	
160	South influent channel combined - TOC	252.908	253	-0.092
161	North influent channel downstream - TOC	252.958	253	-0.042
162	North influent channel corner - TOC	252.913	253	-0.087
163	North influent channel combined - TOC	252.928	253	-0.072
164	PRIMARY EFFLUENT PUMP STATION Pump station influent wet well TOC	258.07	258	0.07
165	Pump station influent channel at wet well TOC	252.983	253	-0.017
166	Join with primary tank effluent channel	252.568	253	-0.432
168	PRIMARY CLARIFIERS Clarifier effluent channel center	252.598	253	-0.402
169	Clarifier effluent channel west	252.633	253	-0.367
170	Clarifier 1 - finger launder downstream	250.208	249.16	1.048
171	Clarifier 1 - finger launder downstream	250.198	249.16	1.038
172	Clarifier 1 - finger launder downstream	250.186	249.16	1.026
173	Clarifier 1 - finger launder downstream	250.188	249.16	1.028
174	Clarifier 1 - finger launder downstream	250.18	249.16	1.02
175	Clarifier 1 - finger launder downstream TOC at walkway	252.918	253	-0.082
176	Clarifier 1 - finger launder downstream TOC at walkway	252.928	253	-0.072
177	Clarifier 1 - finger launder downstream TOC at walkway	252.918	253	-0.082
178	Clarifier 1 - finger launder downstream TOC at walkway	252.913	253	-0.087
179	Clarifier 1 - finger launder downstream TOC at walkway	252.918	253	-0.082
180	Clarifier 1 - finger launder upstream	250.188	249.16	1.028
181	Clarifier 1 - finger launder upstream	250.188	249.16	1.028
182	Clarifier 1 - finger launder upstream	250.188	249.16	1.028
183	Clarifier 1 - finger launder upstream	250.188	249.16	1.028
184	Clarifier 1 - finger launder upstream	250.188	249.16	1.028
185	Clarifier 1 - finger launder upstream TOC at walkway	252.908	253	-0.092
186	Clarifier 1 - finger launder upstream TOC al walkway	252.888	253	-0.112
187	Clarifier 1 - finger launder upstream TOC at walkway	252.878	253	-0.122
188	Clarifier 1 - finger launder upstream TOC at walkway	252.888	253	-0.112
189	Clarifier 1 - finger launder upstream TOC at walkway	252.908	253	-0.092
211	Clarifier 1 Weir elevation	251.688	251.5	0.188

rourcne Ureek wwir
Hydraulic Model Calibration
Survey Locations

212	Clarifier 1 Weir elevation	251.688	251.5	0.188
213	Clarifier 1 Weir elevation	251.683	251.5	0.183
214	Clarifier 1 Weir elevation	251.678	251.5	0.178
215	Clarifier 1 Weir elevation	251.678	251.5	0.178
216	Clarifier 1 Weir elevation	251.693	251.5	0.193
217	Clarifier 1 Weir elevation	251.688	251.5	0.188
218	Clarifier 1 Weir elevation	251.688	251.5	0.188
219	Clarifier 1 Weir elevation	251.678	251.5	0.178
220	Clarifier 1 Weir elevation	251.678	251.5	0.178
221	Clarifier 2 Weir elevation	251.671	251.5	0.171
222	Clarifier 2 Weir elevation	251.658	251.5	0.158
223	Clarifier 2 Weir elevation	251.658	251.5	0.158
224	Clarifier 2 Weir elevation	251.658	251.5	0.158
225	Clarifier 2 Weir elevation	251.666	251.5	0.166
226	Clarifier 2 Weir elevation	251.678	251.5	0.178
227	Clarifier 2 Weir elevation	251.669	251.5	0.169
228	Clarifier 2 Weir elevation	251.678	251.5	0.178
229	Clarifier 2 Weir elevation	251.668	251.5	0.168
230	Clarifier 2 Weir elevation	251.678	251.5	0.178
231	Clarifier 1 influent channel west TOC	252.986	253	-0.014
232	Clarifier 1 influent channel east TOC	252.978	253	-0.022
233	Clarifier 1 water surface level TOC	252.986	253	-0.014
234	Clarifier 2 influent channel west TOC	252.998	253	-0.002
235	Clarifier 2 influent channel east TOC	252.968	253	-0.032
236	Clarifier 2 water surface level TOC	252.958	253	-0.042
237	GRIT TANKS AND SCREENING Combined primary influent channel at corner TOC	253.018	253	0.018
238	Combined primary influent channel at roadway east TOC	254.018	254	0.018
239	Combined primary influent channel at roadway west TOC	257.218	257.21	0.008
242	Parshal flume approach section - invert	252.313	252.27	0.043
243	Parshal flume middle of approach section - TOC	257.238	257.21	0.028
244	Parshal flume slart of approach section - TOC	257.253	257.21	0.043

Hydraulic Model Calibration
Survey Locations

Location Lata Number			Design Elovation	Difference in Elevation
245	Grit chamber effluent	257.203	257.21	-0.007
246	Grit chamber influent	257.218	257.21	0.008
247	Screen chamber effluent channel east TOC	259.208	259.21	-0.002
248	Screen chamber effluent channel west TOC	259.238	259.21	0.028
249	Screen chamber influent channel east TOC	257.208	257.21	-0.002
250	Screen chamber influent channel west TOC	257.233	257.21	0.023

Calibration Results

Calibration Results

 Survey 1 - all basins in service| Location | WSL Predicted by Model (ft) | | | Measured WSL (H) | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $Q=9 \mathrm{mgd}$ | Q = 11 mgd | $\mathrm{Q}=13 \mathrm{mgd}$ | Point | Average |
| 1 CCC outfall hatch | 240.53 | 240.71 | 240.87 | 240.598 | |
| 2 CCC weir | 248.83 | 248.83 | 248.83 | 248.81 | |
| 3 CCC weir - water level | 249.06 | 249.09 | 249.13 | 249.15 | |
| 4 CCC inlet hatch | 249.06 | 249.1 | 249.13 | 249.2 | |
| 5 CCC bypass manhole | 249.07 | 249.1 | 249.12 | 249.15 | |
| 6 Old SC effluent channel | 249.07 | 249.12 | 249.15 | 249.14 | |
| 7 SC effluent combined channel - dn | 249.08 | 249.13 | 249.17 | 249.18 | |
| 8 SC effluent combined channel - mid | 249.08 | 249.13 | 249.17 | 249.2 | 249.06 |
| 8 | 249.08 | 249.13 | 249.17 | 248.92 | 249.06 |
| 9 SC collection channel - dn | 249.08 | 249.12 | 249.16 | 249.13 | 249.15 |
| 9 | 249.08 | 249.12 | 249.16 | 249.14 | |
| 9 | 249.08 | 249.12 | 249.16 | 249.17 | |
| 10 SC collection channel - up | 249.1 | 249.15 | 249.2 | 249.09 | 249.15 |
| 10 | 249.1 | 249.15 | 249.2 | 249.21 | |
| 10 | 249.1 | 249.15 | 249.2 | 249.16 | |
| 10 | 249.1 | 249.15 | 249.2 | 249.17 | |
| 10 | 249.1 | 249.15 | 249.2 | 249.11 | |
| 11 SC launder - dn | 249.22 | 249.24 | 249.26 | 249.19 | 24921 |
| 11 | 249.22 | 249.24 | 249.26 | 249.23 | |
| 19 | 249.22 | 249.24 | 249.26 | 249.22 | |
| 11 | 249.22 | 249.24 | 249.26 | 249.22 | |
| 11 | 249.22 | 249.24 | 249.26 | 249.2 | |
| 11 | 249.22 | 249.24 | 249.26 | 249.22 | |
| 12 SC launder - up | 249.35 | 249.39 | 249.43 | | |
| 13 SC body | 250.55 | 250.56 | 250.57 | 250.57 | 250.55 |
| 13 | 250.55 | 250.56 | 250.57 | 250.53 | |
| 13 | 250.55 | 250.56 | 250.57 | 250.55 | |
| 13 | 250.55 | 250.56 | 250.57 | 250.55 | |
| 13 | 250.55 | 250.56 | 250.57 | 250.52 | |
| 13 | 250.55 | 250.56 | 250.57 | 250.56 | |
| 14 SC influent channel | 250.57 | 250.58 | 250.59 | 250.57 | 250.56 |
| 14 | 250.57 | 250.58 | 250.59 | 250.56 | |
| 14 | 250.57 | 250.58 | 250.59 | 250.54 | |
| 14 | 250.57 | 250.58 | 250.59 | 250.55 | |
| 15 AB influent channel | 250.7 | 250.72 | 250.74 | 250.67 | 250.72 |
| 15 | 250.7 | 250.72 | 250.74 | 250.68 | |
| 15 | 250.7 | 250.72 | 250.74 | 250.74 | |
| 15 | 250.7 | 250.72 | 250.74 | 250.73 | |
| 15 | 250.7 | 250.72 | 250.74 | 250.83 | |
| 15 | 250.7 | 250.72 | 250.74 | 250.64 | |

Calibration Results

Survey 1 - all basins in service

WSL Predicted by Model (ft)
Measured WSL (ft)

Location
16 Primary PS influent wet well
17 Primary PS influent channel
18 Primary clarifier effluent channel - dn
19 Primary clarifier effluent channel - mid
20 Primary clarifier effluent channel - up
21 Primary clarifier launder - dn
21
21
21
21
2 Primary clarifier launder - up
22
22
22
22
23 Primary clarifier body
23
24 Primary clarifier influent channel
24
24
24
25 Combined clarifier influent channel
26 Combined influent channel at road
26
27 Parshal flume approach channel
27
27
28 Grit chamber influent
29 Screens - dn
29
30 Screens - up
30

247.22
247.21
248.3
248.645
248.99
250.45
250.45
250.45
250.45

250.66
250.64
$250.6 \quad 250.64$
$250.6 \quad 250.74$
$250.6 \quad 250.82$
$251.5 \quad 251.55$
$251.5 \quad 251.52$
$251.5 \quad 251.53$
$251.5 \quad 251.57$
$251.5 \quad 251.54$
251.5 . 251.54
$251.48 \quad 251.56$
$251.5 \quad 251.6$
$251.5 \quad 251.56$
$253.53 \quad 253.47$
$253.53 \quad 253.5$
$253.53 \quad 253.7$
$254 \quad 254.01$
$254.03 \quad 254.03$
$254.03 \quad 254.1$
$254.07 \quad 254.06$
$254.07 \quad 254.3$
250.51
250.70
251.54
251.55
251.58
253.56
254.07
254.18

Calibration Results
 Survey 2-1 Secondary Clarifier, 1 Aeration Basin, 1 Primary Clarifier in service

Location	WSL Predicted by Model (ft) $\mathrm{Q}=12 \mathrm{mgd}$	Measured WSL (ft)	
		Point	Average
1 CCC outfall hatch	240.79	240.81	
2 CCC weir	248.83	248.79	
3 CCC weir - water level	249.11	249.08	
4 CCC inlet hatch	249.11	249.16	
5 CCC bypass manhole	249.12	249.05	
6 Old SC effluent channel	249.13	249.17	
7 SC effluent combined channel - dn	249.15	249.2	
8 SC effluent combined channel - mid	249.15	249.19	
9 SC collection channel - dn	249.14	249.21	249.25
9	249.14	249.31	
9	249.14	249.23	
10 SC collection channel - up	249.35	249.26	249.39
10	249.35	249.55	
10	249.35	249.36	
11 SC launder - dn	249.72	249.46	249.48
11	249.72	249.43	
11	249.72	249.53	
11	249.72	249.56	
11	249.72	249.47	
11	249.72	249.44	
12 SC launder - up	250.22		
13 SC body	250.63	250.63	250.63
13	250.63	250.62	
14 SC influent channel	250.72	250.75	250.72
14	250.72	250.71	
14	250.72	250.72	
14	250.72	250.7	
15 AB influent channel	251.15	251.25	251.24
15	251.15	251.26	
15	251.15	251.24	
15	251.15	251.22	
15	251.15	251.33	
15	251.15	251.14	

;

Calibration Results
 Survey 2-1 Secondary Clarifier, 1 Aeration Basin, 1 Primary Clarifier in service

	WSL Predicted by Model (ft)			Measured WSL (f)	
Location	$\mathrm{Q}=10 \mathrm{mgd}$	$\mathrm{Q}=13 \mathrm{mgd}$	$\mathrm{Q}=22 \mathrm{mgd}$	Point	Average
16 Primary PS influent wet well	247.4	247.2	247.2	247.11	
17 Primary PS influent channel	247.4	247.19	247.16	246.93	
18 Primary clarifier effluent channel - dn	248.1	248.25	248.64	248.38	
19 Primary clarifier effluent channel - mid	248.415	248.62	249.155	248.64	
20 Primary clarifier effluent channel - up	248.73	248.99	249.67	249.07	
21 Primary clarifier launder - dn	250.52	250.56	250.68	250.65	250.66
21	250.52	250.56	250.68	250.7	
21	250.52	250.56	250.68	250.63	
21	250.52	250.56	250.68	250.66	
21	250.52	250.56	250.68	250.65	
22 Primary clarifier launder - up	250.7	250.78	250.98	250.78	250.80
22	250.7	250.78	250.98	250.74	
22	250.7	250.78	250.98	250.74	
22	250.7	250.78	250.98	250.85	
22	250.7	250.78	250.98	250.91	
23 Primary clarifier body	251.51	251.52	251.54	251.59	251.70
24 Primary clarifier influent channel	251.51	251.57	251.52	251.8	251.70
24	251.51	251.57	251.52	251.6	
25 Combined clarifier influent channel	251.53	251.55	251.62	251.63	
26 Combined influent channel at road	251.54	251.57	251.69	251.77	251.77
26	251.54	251.57	251.69	251.76	
27 Parshal flume approach channel	253.28	253.48	253.95	253.36	253.50
27	253.28	253.48	253.95	253.43	
27	253.28	253.48	253.95	253.72	
28 Grit chamber influent	253.75	254	254.68	254.04	
29 Screens - dn	253.76	254.03	254.74	254.07	254.07
29	253.76	254.03	254.74	254.07	
30 Screens - up	253.8	254.07	254.82	254.06	254.15
30	253.8	254.07	254.82	254.23	

Calibration Results
 Survey 3 - all basins in service

Location	WSL Predicted by Model (ft)			Measured WSL (f)	
	Q $=8 \mathrm{mgd}$	Q $=11 \mathrm{mgd}$	$Q=15 \mathrm{mgd}$	Point	Average
1 CCC outfall hatch	239.43	240.71	241.02	240.64	
2 CCC weir	248.83	248.83	248.83	248.79	
3 CCC weir - water level	249.04	249.09	249.16	249.02	
4 CCC inlet hatch	249.04	249.1	249.16	249.23	
5 CCC bypass manhole	249.05	249.1	249.16	249.07	
6 Old SC effluent channel	249.05	249.12	249.18	249.14	
7 SC effluent combined channel - dn	249.06	249.13	249.22	249.13	
8 SC effluent combined channel-mid	249.06	249.13	249.22	249.05	249.06
8	249.06	249.13	249.22	249.07	
9 SC collection channel - dn	249.06	249.13	249.21	249.06	249.11
9	249.06	249.13	249.21	249.1	
9	249.06	249.13	249.21	249.12	
9	249.06	249.13	249.21	249.17	
10 SC collection channel - up	249.07	249.15	249.25	249.14	249.17
10	249.07	249.15	249.25	249.22	
10	249.07	249.15	249.25	249.18	
10	249.07	249.15	249.25	249.18	
10	249.07	249.15	249.25	249.15	
11 SC launder - dn	249.2	249.24	249.29	249.24	249.22
11	249.2	249.24	249.29	249.22	
11	249.2	249.24	249.29	249.21	
11	249.2	249.24	249.29	249.22	
11	249.2	249.24	249.29	249.21	
11	249.2	249.24	249.29	249.22	
12 SC launder - up	249.33	249.39	249.47		
13 SC body	250.55	250.56	250.58	250.53	250.54
13	250.55	250.56	250.58	250.52	
13	25055	250.56	250.58	250.53	
13	250.55	250.56	250.58	250.55	
13	250.55	250.56	250.58	250.54	
13	250.55	250.56	250.58	250.54	
14 SC influent channel	250.56	250.58	250.6	250.58	250.57
14	250.56	250.58	250.6	250.56	
14	250.56	250.58	250.6	250.58	
14	250.56	250.58	250.6	250.57	
15 AB influent channel	250.69	250.72	250.77	250.67	250.72
15	250.69	250.72	250.77	250.72	
15	250.69	250.72	250.77	250.74	
15	250.69	250.72	250.77	250.72	
15	250.69	250.72	250.77	250.79	
15	250.69	250.72	250.77	250.66	

Calibration Results
 Survey 3 - all basins in service

Location	WSL Predicted by Model (ft)			Measured WSL (ft)	
	$Q=2 \mathrm{mgd}$	$Q=11 \mathrm{mgd}$	$\mathrm{Q}=22 \mathrm{mgd}$	Point	Average
16 Primary PS influent wet well	246.6	246.6	246.6	246.57	
17 Primary PS influent channel	246.6	246.58	246.51	246.77	
18 Primary clarifier effluent channel - dn	247.62	248.2	248.7	248.44	
19 Primary clarifier effluent channel - mid	247.73	248.51	249.185	248.51	
20 Primary clarifier effluent channel - up	247.84	248.82	249.67	249.21	
21 Primary clarifier launder - dn	250.29	250.43	250.53	250.44	250.39
21	250.29	250.43	250.53	250.37	
21	250.29	250.43	250.53	250.32	
21	250.29	250.43	250.53	250.34	
21	250.29	250.43	250.53	250.46	
22 Primary clarifier launder - up	250.35	250.56	250.73	250.74	250.84
22	250.35	250.56	250.73	250.78	
22	250.35	250.56	250.73	250.84	
22	250.35	250.56	250.73	250.89	
22	250.35	250.56	250.73	250.95	
23 Primary clarifier body	251.46	251.49	251.52	251.53	251.52
23	251.46	251.49	251.52	251.5	
24 Primary clarifier influent channel	251.46	251.49	251.51	251.55	251.54
24	251.46	251.49	251.51	251.52	
24	251.46	251.49	251.51	251.51	
24	251.46	251.49	251.51	251.58	
25 Combined clarifier influent channel	251.46	251.48	251.47	251.62	
26 Combined influent channel at road	251.46	251.5	251.54	251.73	251.62
26	251.46	251.5	251.49	251.51	
27 Parshal flume approach channel	252.67	253.41	254	253.82	253.63
27	252.67	253.41	254	253.75	
27	252.67	253.41	254	253.33	
28 Grit chamber influent	252.93	253.83	254.68	253.46	
29 Screens - dn	252.93	253.85	254.74	253.72	253.79
29	252.93	253.85	254.74	253.85	
30 Screens - up	252.94	253.89	254.82	254.09	254.03
30	252.94	253.89	254.82	253.96	

APPENDIX C
Order-of-Magnitude Cost Information

FOURCHE CREEK WWTP

UPGRADES REQUIRED TO TREAT ADDITIONAL EXTRANEOUS FLOWS AT THE FACILITY
DESIGN CRITERIA

	Current Conditions		Expansion	
	Average	Max	Average	Max
Flow (mgd)	15	38	15	60
Forcemain	existing forcemain 42", additional 30" forcemain required			
dia (inch)	42	42	30	51.6
area (ft2)	9.62	9.62	4.91	14.52
velocity (ft/s)	2.41	6.11	4.73	6.39
length (ft)	41,500	41,500	41,500	41,500
Headworks - screens				
\# of screens	2	2	2	3
width (ft)	10	10	10	15

Inlet channel $\begin{array}{llll}\text { width (ft) } & 5 & 5 & 5\end{array}$

Primary clarifiers old secondary clarifiers retrofitted to provide additional primary clarifier capacity

\# of clarifiers	2	2	2	3
width (ft)	60	60	60	60
length (ft)	200	200	200	200
SOR $(\mathrm{gpd} / \mathrm{ft2})$	625	1583	625	1667

Aeration basin additional aeration basin volume provided

\# of basins	3	3	3	5
RAS per basin (mgd)	2.3	2.3	2.3	2.3
volume (mg)	0.87	0.87	0.87	0.87
HRT (hours)	4.2	1.6	4.2	1.7

Secondary clarifiers additional secondary clarifier volume provided

\# of clarifiers	3	3	3	5
width (ft)	40	40	40	40
length (ft)	186	186	186	186
SOR (gpd/ft2)	672	1703	672	1613

Chlorine Contact Chamber

\# of units
volume (ft3)
HRT
Outfall

dia (in)	72	72	72	72
length (ft)	1085	1085	1085	1085
available volume (ft3)	30,662	30,662	30,662	30,662
additional HRT (min)	53	21	53	13

COST INFORMATION

FOURCHE CREEK UPGRADES
FORCEMAIN UPGRADE - to increase hydraulic cacpacity from Arch Street PS to Fourche Creek to 60

Item		Number	Unit Cost (\$)	Install factor		Cost (\$)
1 Forcemain (\$)						
30 "forcemain	ft	41500	140	1	\$	5,810,000
2 Contingency	\%	1	0.2		\$	1,162,000
Subtotal					\$	6,972,000
Contractors operation	\%	1	0.1		\$	697,200
Contractors profit	\%	1	0.08		\$	557,760
Estimated Cost					\$	8,226,960
Escalation	\%	1	0.061		\$	501,845
Engineering	\%	1	0.12		\$	987,235
Project Total					\$	9,716,040

COST INFORMATION

FOURCHE CREEK UPGRADES
ARCH STREET PUMP STATION UPGRADE - replace existing pumps and screens to increase capacity to 60 mgd

Item	Unit	Number	Unit Cost (\$)	Install factor		Cost (\$)	
2 Mechanical equipment							
Pumps	ea	3	150000	1.3	\$	585,000	
VFD	ea	3	170000	1.5	\$	765,000	
Screens	ea	1	120000	1.5	\$	180,000	
3 Electrical	allow	1	150000	1	\$	150,000	\$ 1,680,000
4 Contingency	\%	1	0.25		\$	420,000	
Subtotal					\$	2,100,000	
Contractors operation	\%	1	0.1		\$	210,000	
Contractors profit	\%	1	0.08		\$	168,000	
Estimated Cost					\$	2,478,000	
Escalation	\%	1	0.061		\$	151,158	
Engineering	\%	1	0.12		\$	297,360	
Project Total					\$	2,926,518	

COST INFORMATION FOURCHE CREEK UPGRADES

WWTP UPGRADE - to increase peak hydraulic capacity to 60 mgd

Item	Unit	Number	Unit Cost (\$)	Install factor		Cost (\$)		
1 Headworks								
Screens	ea	3	150000	1.7	\$	765,000		
Washers	ea	3	60000	1.2	\$	216,000		
Grit removal	ea	1	300000	1.2	\$	360,000	\$	1,341,000
2 Primaries								
Pipe	ft	800	120	1.1	\$	105,600		
Mechanism	ea	9	70000	1.2	\$	756,000		
Sludge pump stations	ea	2	100000	1.5	\$	300,000		
Clarifier modifications (old final)	ea	1	100000	1.1	\$	110,000		
Clarifer modifications (existing)	ea	2	30000	1.1	\$	66,000	\$	1,337,600
3 Primary effluent pump station								
Pump	ea	1	500000	1.3	\$	650.000		
Piping modifications	allow	1	50000	1.3	\$	65,000	\$	715,000
4 Secondary Treatment								
Aeration basins	ea	2	650000	1.4	\$	1,820,000		
Aeration equipment	ea	2	450000	1.6	\$	1,440,000		
Gallery	f2	2400	300	1.2	\$	864,000		
RASNAS pumps	ea	4	70000	1.6	\$	448,000	\$	4,572,000
Secondary clarifiers	ea	2	400000	1.3	\$	1,040,000		
Clarifier mechanisms	ea	8	70000	1.2	\$	672,000	\$	1,712,000
5 Site work	\%	1	0.1		\$	967,760		
6 Contingency	\%	1	0.35		\$	3,725,876		
Subtotal					\$	14,371,236		
Contractors operation	\%	1	0.1		\$	1,437,124		
Allowance for unidentified items	\%	1	0.2		\$	2,874,247		
Contractors profit	\%	1	0.08		\$	1,149,699		
Estimated Cost					\$	19,832,306		
Escalation	\%	1	0.061		\$	1,209,771		
Engineering	\%	1	0.12		\$	2,379,877		
Project Total					\$	23,421,953		

ENGINEERING AND COST REPORT
for
LITTLE MAUMELLE RIVERSUBBASIN SEWERAGE STUDY
Prepared for

WATER / WASTEWATER ADVISORY COMMITTEE

On behalf of the

LITTLE ROCK WASTEWATER UTILITY

Little Rock Sanitary Sewer Committee

James R. Pender, Chair
Dale J. Wintroath, Vice Chair
Stuart S. Mackey, Secretary
Charles G. Goss, Member
Patrick D. Miller, Member
Utility Manager
Mr. Reggie Corbitt, P.E.
221 East Capitol
Little Rock, Arkansas 72202
FINAL DRAFT
Prepared by

Tanner Engineering Consultants

in Affiliation with

Carter Burgess

10809 Executive Center, Suite 204
Little Rock, Arkansas 72211-6021
www.c-b.com

engineering and cost report

for
LITTLE MAUMELLE RIVER SUBBASIN SEWERAGE STUDY

Prepared for
WATER / WASTEWATER ADVISORY COMMITTEE
On behalf of the

LITTLE ROCK WASTEWATER UTILITY

Little Rock Sanitary Sewer Committee

James R. Pender, Chair
Dale J. Wintroath, Vice Chair
Stuart S. Mackey, Secretary
Charles G. Goss, Member
Patrick D. Miller, Member
Utility Manager
Mr. Reggie Corbitt, P.E.
221 East Capitol
Little Rock, Arkansas 72202
FINAL DRAFT
Prepared by

Tanner Engineering Consultants

in Affiliation with
Carter:Burgess
10809 Executive Center, Suite 204
Little Rock, Arkansas 72211-6021
www.c-b.com ${ }^{`}$

TABLE OF CONTENTS

SECTION
PAGE
I. PROJECT IDENTIFICATION
1.1 Project Name 1
1.2 Location 1
1.3 Total Cost 1
1.4 Consumer Charge 1
1.5 Connection Fee 1
1.6 Annual Median Household Income3
1.7 Affordability3
II. BACKGROUND
2.1 Existing Process 4
2.2 Components 4
2.3 Location of Plants 4
2.4 Problem 4
2.5 Effluent Data 5
2.6 Collection System 5
2.7 Inflow/Infiltration Studies 7
2.8 NPDES Permits 7
2.9 Discharge Flows 8
III. PROPOSED PROJECT
3.1 Purpose and Need
9
9
3.2 Facility Planning Area 11
3.3 Selected Alternative
15
15
3.4 Land Ownership
16
16
3.5 Proposed Collection System 16
3.6 Collection System Rehabilitation 18
3.7 Design Year
18
18
3.8 Population
18
18
3.9 Capacity
19
19
3.10 Sludge Treatment/Disposal 23

SECTION

IV. ALTERNATIVES

4.1 Alternatives Considered 25
4.2 Altemative Collection Systems 25
4.3 Cost Analysis of each Alternative 28
4.4 Environmental Impacts of the Alternatives 37
4.5 Reasons for Accepting/Rejecting Alternatives 38
V. ENVIRONMENTAL SETTING
5.1 Geology 39
5.2 Physiography and Topography 39
5.3 Soils 40
5.4 Climatology 41
5.5 Hydrology 42
5.6 Receiving Streams 42
5.7 Biological Elements 43
5.8 Cultural Factors 43
5.9 National Natural Landmarks 43
5.10 Environmentally Sensitive Areas 43
5.11 Socio-Economic 44
5.12 Community Needs 44
5.13 Land Use 44
VI. ENVIRONMENTAL IMPACTS
6.1 Traffic Disruption 45
6.2 Erosion and Sedimentation 45
6.3 Loss of Vegetation 45
6.4 Noise 45
6.5 Odor 46
6.6 Dust Control Measures 46
6.7 Bypassing Control Measures 46
6.8 Aesthetic Values 46
6.9 Long-Term/Secondary Impacts of Growth 46
VII. COORDINATION AND DOCUMENTATION 47

APPENDIX

A1 A Sewer Service Study for Northwest Little Rock

A2 Little Maumelle Basin Study
A3 Supplemental Wastewater Flow Data
A4 Wet Weather Flow Projections

LIST OF TABLES

TABLE
PAGE

1. Existing Sanitary Sewer Pipe Infrastructure 7
2. Development Pattern Projections 14
3. Household Population Projection 19
4. Population Projections 19
5. Wastewater Design Parameters 21
6. Household Wastewater Flows 21
7. Commercial Wastewater Flow 22
8. Office / Institutional Wastewater Flow 22
9. Wastewater Flow Projections 22
10. Existing Interceptor Capacity 23
11. New Interceptor and Pump Station Upgrade Cost 29
12. Little Maumelle WWTP Construction Cost 35
13. 4.0 MGD WWTP Estimated O\&M Costs 36
14. Cost Analysis Summary 37
15. Topographic Range and Tributaries 40
16. Arkansas River Flow Requirements 43

LIST OF EXHIBITS

EXHIBITS
PAGE

1. Subbasin Study Area 2
2. Existing Wastewater Infrastructure 6
3. Future Land Use 11
4. Current Zoning 12
5. Proposed WastewaterTreatment Sites 16
6. Wastewater Interceptors 23

SECTION I

PROJECT IDENTIFICATION

1.1 PROJECT NAME:

Engineering and Cost Report for Little Maumelle River Subbasin Sewerage Study.

1.2 LOCATION:

The project area incorporates 51,475 acres within Pulaski County, of which fifteen percent is bound within the city limits of Little Rock. The Little Rock Wastewater Utility (Utility) has developed comprehensive wastewater basin maps of the sewer drainage basins. The area incorporates the following subbasins for the study area: 60010, 60100, 60200, 60301, 60302, 60400, $60500,60600,60700,60800$, and 60900 . The subbasins will be referred to as the "Watershed". Exhibit 1 depicts the study area and individual subbasins.

1.3 TOTAL COST:

The total cost for the proposed improvements is $\$ 18,878,000$.

1.4 CONSUMER CHARGE:

The consumer charge for the system will increase due to the project. The Utility's increased consumer charge will be calculated at a future date depending upon the funding source for the proposed project.

1.5 CONNECTION FEE:

Connection fees are not expected to change as a result of this project.

1.6 ANNUAL MEDIAN HOUSEHOLD INCOME:

The 1997 U.S. Census Bureau reported an annual median household income of $\$ 34,727$ for Pulaski County.

1.7 AFFORDABILITY:

Based upon the available data, the proposed project is considered affordable to the customers.

SECTION II BACKGROUND

2.1 EXISTING PROCESS:

Little Rock has two major treatment facilities: one at Adams Field and one at Fourche Creek. Both facilities discharge into the Arkansas River. The plants will not be affected by the proposed construction projects.

2.2 COMPONENTS:

Both plants are activated sludge treatment processes with chlorine disinfection. Waste solids from Adams Field are transferred to Fourche Creek where the combined solids from both plants are thickened and anaerobically digested. The Fourche Creek plant recovers methane for power generation.

2.3 LOCATION OF PLANTS:

The Fourche Creek Plant is located at 34 degrees, 41 minutes, 55 seconds North and 92 degrees, 8 minutes, 40 seconds West. Adams Field Plant is located at 34 degrees, 44 minutes, 34 seconds North and 92 degrees, 12 minutes, 45 seconds West.

2.4 PROBLEM:

Currently, the wastewater from the Watershed is transported to the Adam's Field Treatment Facility through a series of two pump stations and interceptors along the Arkansas River. The names of the pumps stations are the Little Maumelle Pump Station and the Cantrell Road Pump Station. The Little Maumelle Pump Station is within the study area and has an observed maximum pumping capacity of $3,450 \mathrm{gpm}$ or 4.97 MGD; however, design curve capacity is $5,200 \mathrm{gpm}$ or 7.28 MGD. This difference is unexplained, but may be due to a constriction, such as entrapped air, in the downstream force main.

The Little Maumelle Sewerage System has surcharged in the past because pumping capacity is insufficient to transport wet weather peaks during heavy rains. Peak influent flow reported by Byrd-Forbes Pitometer during March 15-16 2000 for a 1.70 -inch rain event measured 7.1 MGD through the Watershed. The rain event was less than a 1 -year frequency event. The pumping capacity could be increased but downstream sewers located adjacent to Murray Park lack capacity to convey additional flows.

To abate overflows near Murray Park the Utility must reduce Little Maumelle pumping rates when the Rebsamen interceptor is hydraulically overloaded. This practice causes the Watershed to surcharge and overflow more often than it would otherwise.

Therefore, there is an immediate need to address the wastewater flows for the Watershed.

2.5 EFFLUENT DATA:

Effluent data is not required for this study.

2.6 COLLECTION SYSTEM:

The existing collection system within the Watershed is primarily within five of the eleven subbasins. Exhibit 2 denotes a graphic presentation of the existing wastewater mains within the subbasins with an approximate installation date. Table 1 details the quantity and size of the existing infrastructure within the Watershed.

Table 1: Existing Sanitary Sewer Pipe Infrastructure

Pipe Size	Sub-basin					
	$\begin{gathered} 60010 \\ \text { (ft.) } \\ \hline \end{gathered}$	$\begin{gathered} 60100 \\ \text { (ft.) } \\ \hline \end{gathered}$	60200 (ft.)	60301 (ft.)	$\begin{gathered} 60302 \\ (\mathrm{ft} .) \end{gathered}$	Total (ft.)
<8"	0	5,688	12,157	403	2,947	21,195
8"	0	98,442	274,140	70,397	2,769	445,748
10"	0	6,284	15,266	6,074	0	27,624
12"	0	332	4,832	1,898	0	7,062
14"	0	185	0	0	0	185
15"	0	4,986	640	4,941	0	10,567
18"	0	7,035	323	4,593	0	11,951
20"	0	0	3,965	0	0	3,965
24"	0	0	9,488	0	0	9,488
Tota	24,124 ${ }^{\text {(1) }}$	393	158	2,933	0	27,608
	24,124	123,345	320,969	91,239	5,716	565,393

${ }^{(1)}$ Force Main Interceptor from Little Maumelle River Pump Station
The Watershed contains one pump station facility within Subbasin 60010. The pump station, called Little Maumelle Pump Station, was constructed in 1987, and can be located in Exhibit 2. The station is comprised of four pumps constructed in parallel: two 150 horsepower pumps, two 20 horsepower pumps, and a wet well with an approximate capacity of 300,000 gallons. The maximum observed operating capacity of the pump station is approximately $3,450 \mathrm{gpm}(4.97 \mathrm{Mgd})$.

2.7 INFILTRATION / INFLOW STUDY:

The Utility is currently under contract with Montgomery Watson to produce infiltration and inflow data for the Watershed. The results of the ongoing study will be available in late 2001. Byrd Forbes Pitometer completed a draft I/I study in September 2000 which included I/I data on sub-basins 60100, 60200, and 60301.

2.8 NATIONAL POLLUTION DISCHARGE ELIMINATION SYSTEM PERMITS

A wastewater discharge permit for any new plant serving the study area will be dependent upon the site selected and the final discharge point. If treated wastewater is discharged to the Arkansas River, it is assumed that the discharge
requirement for wastewater treatment facilities will comply with current permits set forth for the existing Adam's Field and Fourche Creek facilities. These plants have effluent permit limits of $30 / 30 \mathrm{mg} / \mathrm{L}$ BOD/TSS. Current NPDES permits are on file at ADEQ, and at the offices at LRWU.

If a new wastewater treatment plant is selected for implementation, a specific NPDES permit application will be filed with ADEQ for the proposed facilities.

2.9 DISCHARGE FLOWS

No discharge flow information is provided in this report because existing treatment plants are not included in these projects.

SECTION III PROPOSED PROJECT

3.1 PURPOSE AND NEED:

Previous wastewater studies (Crist and Smith, 1969, Mehlburger, August 1974, Freese and Nichols, Inc. 1979) have expressed the need to construct a treatment facility near the mouth of the Little Maumelle River and divert wastewater flows from the Adam's Field treatment facility. A facility plan was submitted to the United States Environmental Protection Agency ("USEPA") in April 1977 as part of an application for a step one grant for the construction of a treatment plant for the Watershed. The facility plan was met with public opposition, and USEPA mandated an Environmental Impact Statement ("EIS") be prepared to address public concerns.

The conclusion of the EIS recommended no subsequent grants be awarded for the project, but failed to address alternatives for the environmental questions related to transporting and treating wastewater flows from the Watershed. In 1979, when it became evident that a permanent treatment facility would not be constructed, the Utility proceeded with the design and construction of three new pumping stations in the Watershed to increase wastewater flow conveyance capacity to the Adam's Field treatment facility.

A Sewer Service Study for Northwest Little Rock was compiled in April 1980 by the Little Rock Office of Comprehensive Planning (See Appendix A1). As a result, the city of Little Rock imposed a low-density single-family residential classification throughout the northwest area of Little Rock until the Utility installed the infrastructure to address anticipated wastewater flows. Based upon a wastewater study performed in November 1983, a new pump station (Little Maumelle Pump Station) was constructed near Pinnacle Valley Farms and a
force main was extended to the Rebsamen Interceptor near the Murray Lock and Dam. In addition, the study highlighted improvements for the wastewater infrastructure at an approximate cost of six million dollars. This included improvements to the Hinson Road, Ison, and Walton Heights Interceptors. These improvements curtailed the immediate need for a treatment facility located near the mouth of the Little Maumelle River, and rerouted flows from the Watershed to the Rebsamen interceptor and Murray Park. Under normal operating conditions, in 1987, the Rebsamen interceptor had sufficient capacity to receive and transport the flow from the new pump station.

The Little Maumelle Pump Station was designed to serve 11,000 people in the year 2000. The 1983 study proposed pump improvements and the construction of a parallel river interceptor for the year 2000. The improvements would transport anticipated flows to the Adam's Field Treatment Facility. The study did not include anticipated costs for the parallel interceptor or the feasibility to construct a treatment facility for the Watershed to divert flows from Adam's Field.

Overflows have been documented in the Rebsamen Interceptor near Murray Park. Even though this section of the system is not within the Little Maumelle River Watershed, the Rebsamen Interceptor receives and transports all wastewater from the study area. To abate overflows near the Murray Park Interceptor, the Little Maumelle Pump Station discharge rate is reduced when the Rebsamen Interceptor is hydraulically overloaded. Lowering the pump station discharge rate causes the Maumelle System to overflow during high wet weather flows.

Engineering \& Cost Report for Little Maumelle River Subbasin Sewerage Study

3.2 FACILITY PLANNING AREA:

The Little Maumelle Subbasin is the facility planning area. Exhibit 3 and 4 denote planning boundaries and future land use. Table 2 below depicts land use application as reported by the Sewer Service Study reference in Appendix A2.

Engineering \& Cost Report for Little Maumelle River Subbasin Sewerage Study

Table 2: Development Pattern Projections

Sub- basin	Existing Development - Acres Total				Not Developable	Existing Large lot	Non- residential
	Urban	Urban + Non Residential					
60010	1,738	956	245	10	257	-	10
60100	1,312	79	-	262	197	774	1,036
60200	3,926	393	-	393	196	2,944	3,337
60301	2,235	335	-	335	220	1,345	1,680
60302	6,437	2,124	1030	966	2,575	772	1,738
60400	4,411	220	975	90	4,101	-	90
60500	3,632	218	734	182	3,232	-	182
60600	6,042	604	1,364	604	4,834	-	604
60700	6,014	902	456	300	4,812	-	300
60800	7,401	370	1,000	740	1,961	4,070	4,810
60900	8,325	416	277	$\mathbf{1 , 2 5 0}$	1,029	5,430	6,680
			$\mathbf{6 , 0 8 1}$	$\mathbf{5 , 1 3 2}$	$\mathbf{2 3 , 4 1 4}$	$\mathbf{1 5 , 3 3 5}$	$\mathbf{2 0 , 4 6 7}$
Totals	51,473	$\mathbf{6 , 6 1 7}$					

Development patterns vary pending on land use. The Little Rock Wastewater Utility has not typically provided sewer service for large lot developments due to economics. For these tracts, the cost of installation versus number of sewer customers served is not cost effective. In addition, based upon past development trends, denser development on large acre tracks is unlikely according to the data supplied by Little Rock Planning and Development. Utilizing this same philosophy, it is unlikely that a wastewater collection system will be installed to support non-residential development without any projected urban development. As such, subbasins not projected for urban development will be removed for flow capacity analysis for this report, but are included in Appendix A3 as supplemental data. The subbasins not included for wastewater calculations are 60010, 60400, 60500, 60600, and 60700.

3.3 SELECTED ALTERNATIVES:

Based upon the existing and projected wastewater flows from the Watershed and documented overflows, two distinct alternatives are available for analysis. The first alternative is to upgrade the Little Maumelle Pump Station, construct a Flow Equalization Basin, upgrade the Cantrell Pump Station, and construct a new parallel interceptor along the existing interceptors to transport the existing and projected wastewater flow from the Watershed to the Adam's Field Treatment Facility.

The second alternative would be to construct a new treatment facility located near the mouth of the Little Maumelle River to treat and discharge the wastewater from the Watershed.

Constructing a new treatment facility near the mouth of the Little Maumelle River has been proposed as a feasible alternative previously. The "Comprehensive Sanitary Sewerage Plan for the Pulaski-Saline Metroplan Area", 1969, detailed the need for a sanitary treatment facility near the mouth of the Little Maumelle River. Subsequent reports, Mehlburger 1974, Freese and Nichols, 1979, stressed the necessary need for a separate treatment facility to treat wastewater discharge from the Watershed near the mouth of the Little Maumelle River.

Site selection was based upon available land area optimizing the function of existing infrastructure. The topography was analyzed for placement of a treatment facility for the Watershed. Upon investigation and reference to previous studies, the mouth of the Little Maumelle River is the most cost effective location to serve wastewater flows from the Watershed. In addition the existing Little Maumelle Pump Station could be utilized to pump influent to or effluent from the wastewater treatment facility pending final location and function of the site.

The Utility was consulted for possible site locations. Field visits were conducted and effected property owners identified. Possible site selections are shown in Exhibit 5. The city of Little Rock currently has ownership of Site 1. Site 2, Site 3, and Site 4 are owned by private individuals.

It is assumed that effluent from a plant on the Little Maumelle River would be conveyed to the Arkansas River for discharge, since a discharge into the Little Maumelle River would likely require more stringent permit limits. Whether providing a higher level of treatment is more expensive than effluent conveyance to the Arkansas River cannot be determined without more site specific permitting and cost evaluations, which would be addressed during subsequent detailed facility planning.

3.4 LAND OWNERSHIP:

The owners of the land located within the proposed improvements will be contacted regarding the proposed project needs at the appropriate time. The desirable method of acquisition is negotiation with the owners based upon the Federal Relocation and Acquisition Act.

3.5 PROPOSED COLLECTION SYSTEM:

There is not a collection system planned. Specific sites may require the construction of transmission lines to convey the wastewater from its current discharge point to new treatment facilities.

3.6 COLLECTION SYSTEM REHABILITATION:

There is not a collection system rehabilitation planned.

3.7 DESIGN YEAR:

The design year for this project is 2025.

3.8 POPULATION:

The Utility tasked Little Rock Planning and Development to provide projections for households, non-residential demand, and residential development patterns for the Little Maumelle River Watershed. Past wastewater studies performed for the City (1969, 1974, 1979, and 1983) have taken this approach which has been generally adopted as a more accurate means of forecasting population growth and trends for the Pulaski county area. The Little Rock Planning and Development study is enclosed in Appendix A2.

Projected household data over the design period is presented in Table 3. To develop population data, 2.7 persons per household were utilized at each projected year. Populations can be seen in Table 4. Population for the year 2025 was developed from the projected high trend. Year 2000 projections were based upon the established 1990 data and residential permits from 1990 to 2000.

Table 3: Household Population Projection

Subbasin	Household Population			Household Population 2025			Household Population Projected Full Development
	$\begin{aligned} & 1990 \\ & \text { est. } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 90-99 \\ & \text { Incr. } \\ & \hline \end{aligned}$	2010	Metroplan	Trend	High Trend	
60010	65		88	102	105	105	260
60100	1250	468	2150	2363	2365	2365	2400
60200	2500	893	4065	4339	5000	5500	8900
60301	240	607	1450	789	2240	2840	4120
60302	190		790	1046	1490	1990	3200
60400	160		560	808	860	860	1370
60500	170		400	661	660	660	1080
60600	205		495	798	800	800	1610
60700	80		125	231	230	230	1605
60800	140		240	498	500	500	12800
60900	70		140	210	210	210	16650

Table 4: Population Projections

Sub- basin	Population (Capita)					Population Developed		
	$\mathbf{2 0 0 0}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 2 5}$	Projected Full	$\mathbf{2 0 0 0}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 2 5}$	
60010	176	238	284	702	25%	34%	40%	
60100	4,639	5,805	6,386	6,480	72%	90%	99%	
60200	9,161	10,976	14,850	24,030	38%	46%	62%	
60301	2,287	3,915	7,668	11,124	21%	35%	69%	
60302	513	2,133	5,373	8,640	6%	25%	62%	
60400	432	1,512	2,322	3,699	12%	41%	63%	
60500	459	1,080	1,782	2,916	16%	37%	61%	
60600	554	1,337	2,160	4,347	13%	31%	50%	
60700	216	338	621	4,334	5%	8%	14%	
60800	378	648	1,350	34,560	1%	2%	4%	
60900	189	378	567	44,955	0%	1%	1%	
Totals	$\mathbf{1 9 , 0 0 3}$	$\mathbf{2 8 , 3 5 8}$	$\mathbf{4 3 , 3 6 2}$	$\mathbf{1 4 5 , 7 8 7}$				

3.9 CAPACITY OF PROPOSED PROJECT:

One of the early challenges in wastewater transportation and treatment design is the development of wastewater flows based upon projected population data. Methods have been developed to predict anticipated wastewater flows with moderate success; however, predicting industry locations and land development trends is not an exact science.

The Little Rock Planning and Development study was evaluated to project wastewater flows in conjunction with $I / /$ data obtained during the Byrd Forbes flow study conducted in the spring of 2000. Average daily flows were determined based upon population data; however, the peak hydraulic capacity of the facility is based upon measured field data which was projected to each respective design year and minimum design criteria established by the Utility. The criteria used to project the wet weather data for inflow and infiltration can be found in Appendix A4.

Since the Little Rock Planning and Development data is based upon household change, commercial use, and residential development patterns, the methodology was developed to estimate population trends that will be used for flow determination assuming a density of 2.7 people per household.

Based upon the available data the design flow parameters were developed for each subbasin at design years 2010,2025 , and fully developed. The parameters are summarized in Table 5. Please note that flows shown for year 2000, are estimated from data provided by Little Rock Planning and Development and not from documented wastewater flows.

Percent of the developed population in each respective subbasin was utilized to breakdown each design year. Household flow, commercial and office / institutional flows are only determined for subbasins that have projected urban
development. This rationale, as discussed earlier, is based upon the unliklihood of wastewater improvements on large lot development. Comprehensive flows were developed for all subbasins and can be referenced in Appendix A3.
Table 5: Wastewater Design Parameters

Design Flow	Parameters
Average Daily Flow (ADF)	Household Flow + Commercial Flow + Office / Institutional Flow
Wet Weather Flow (WWF)	Measured Flow Projected by Byrd Forbes Study

Where: Household Flow = 90 gallons per capita day (gpcd)
Commercial Flow $=15$ gpcd
Office $/$ Institutional = 15 gpcd
Table 6: Household Wastewater Flows

	Population (Capita)				Flows (Mgd) - Average			
Sub- basin	$\mathbf{2 0 0 0}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 2 5}$	Projected Full	$\mathbf{2 0 0 0}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 2 5}$	Projected Full
60100	4639	5805	6386	6480	0.42	0.52	0.57	0.65
60200	9161	10976	14850	24030	0.82	0.99	1.34	2.40
60301	2287	3915	7668	11124	0.21	0.35	0.69	1.11
60302	513	2133	5373	8640	0.05	0.19	0.48	0.86
60800	378	648	1350	34560	0.03	0.06	0.12	3.46
60900	189	378	567	44955	0.02	0.03	0.05	4.50
Totals	$\mathbf{1 7 1 6 7}$	$\mathbf{2 3 8 5 5}$	$\mathbf{3 6 1 9 4}$	$\mathbf{1 2 9 7 8 9}$	$\mathbf{1 . 5 4}$	$\mathbf{2 . 1 5}$	$\mathbf{3 . 2 6}$	$\mathbf{1 2 . 9 8}$

Table 7: Commercial Wastewater Flow

Sub-basin	$\mathbf{2 0 0 0}$ (Mgd)	$\mathbf{2 0 1 0}$ (Mgd)	2025 (Mgd)	Fully Developed (Mgd)
60100	0.05	0.07	0.07	0.08
60200	0.03	0.03	0.05	0.08
60301	0.02	0.04	0.07	0.11
60302	0.01	0.05	0.12	0.19
60800	0.00	0.01	0.01	0.29
60900	0.00	0.00	0.01	0.42
Totals	$\mathbf{0 . 1 2}$	$\mathbf{0 . 1 9}$	$\mathbf{0 . 3 3}$	$\mathbf{1 . 1 5}$

Table 8: Office / Institutional Wastewater Flow

Sub-basin	$\mathbf{2 0 0 0}$ (Mgd)	$\mathbf{2 0 1 0}$ (Mgd)	$\mathbf{2 0 2 5}$ (Mgd)	Fully Developed (Mgd)
60100	0.09	0.11	0.12	0.12
60200	0.10	0.12	0.17	0.27
60301	0.03	0.05	0.09	0.14
60302	0.04	0.17	0.42	0.67
60800	0.01	0.01	0.02	0.46
60900	0.00	0.01	0.01	0.67
Totals	$\mathbf{0 . 2 7}$	$\mathbf{0 . 4 6}$	$\mathbf{0 . 8 3}$	$\mathbf{2 . 3 4}$

Table 9: Wastewater Flow Projections

Sub- basin	Average Daily Flow (Mgd)				Peak Wet Weather Flow (Mgd)			
	$\mathbf{2 0 0 0}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 2 5}$	Fully Developed	$\mathbf{2 0 0 0}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 2 5}$	Fully Developed
60100	0.56	0.70	0.77	0.85	3.10	3.18	3.21	3.22
60200	0.96	1.15	1.55	2.75	8.64	8.64	8.64	8.64
60301	0.26	0.44	0.86	1.35	0.44	0.61	1.05	1.46
60302	0.10	0.40	1.02	1.72	0.13	0.39	0.98	1.40
60800	0.04	0.07	0.15	4.21	n/a	0.08	0.15	5.65
60900	0.02	0.04	0.06	5.59	n/a	0.05	0.05	7.84
Totals	$\mathbf{1 . 9 3}$	$\mathbf{2 . 8 0}$	$\mathbf{4 . 4 1}$	$\mathbf{1 6 . 4 7}$	$\mathbf{1 2 . 3 1}$	$\mathbf{1 2 . 9 5}$	$\mathbf{1 4 . 0 9}$	$\mathbf{2 8 . 2 1}$

Table 10 below depicts the existing capacity of the interceptors from the Little Maumelle Pump Station to Adam's Field. Exhibit 6 denotes the interceptor locations. The Utility is currently under contract with Montgomery Watson to determine current flow within the interceptors. Observed flows during five year
frequency events through the interceptor are at or near capacity for the entire interceptor length.

Table 10: Existing Interceptor Capacity

Interceptor Section	Pipe Diameter	Maximum Capacity (Mgd)
Little Maumelle Force Main${ }^{(1)}$	$24^{\prime \prime}$	10.00
Rebsamen - Gravity ${ }^{(2)}$	$30^{\prime \prime}$	6.33
Cantrell - Force Main	$30^{\prime \prime}$	15.82
Riverfront Louisiana St - Bond St.${ }^{(2)}$	$54^{\prime \prime}$	19.57
Riverfront Bond St. - Adam's Field${ }^{(2)}$	$60^{\prime \prime}$	23.95

${ }^{(1)}$ Based on Maximum Velocity of 5 fps
${ }^{(2)}$ Based on Minimum Velocity of 2 fp

3.10 SLUDGE TREATMENT AND DISPOSAL:

Sludge disposal is anticipated to be handled in the same manner which the Utility currently uses. The sludge will be stabilized and land applied on a remote site. The need for temporary storage facilities on the plant site for stabilized sludge will be determined during design.

SECTION IV

ALTERNATIVES

4.1 ALTERNATIVES CONSIDERED:

Alternatives considered for this project include:

1. No action
2.Upgrade Pumping Facilities, Construct Flow Equalization Basin, and Construct Parallel Interceptor.
2. New Wastewater Treatment Facility

4.2 DESCRIPTION OF ALTERNATIVES:

1. No action.

This alternative would result in continued wastewater overflows within the Watershed and along the interceptor route. The Utility is being sued by the Sierra Club as a direct result of the overflows. In addition to increased opposition by the Sierra Club, wastewater overflows are generally not allowed by NPDES policy as enforced by ADEQ.
2. Upgrade Pumping Facilities, Construct Flow Equalization Basin, and Construct Parallel Interceptor

The Little Maumelle Pump Station and the Cantrell Pump Station would be upgraded to transport a minimum of average daily flows that are to be expected from the Watershed for the design year. To address infiltration and inflow during wet weather periods a flow equalization basin would be constructed near the existing Little Maumelle Pump Station. Wet weather flows would be diverted into the flow equalization basin. Wastewater stored in the flow equalization basin would be transported through the system during off-peak periods.

The existing interceptors do not have adequate capacity to transport the wastewater from the Watershed to Adam's Field, therefore; a 36- inch parallel interceptor is proposed to accommodate the flows from the Watershed. The parallel interceptor will require construction through downtown Little Rock along Highway 10 (Cantrell).

3. Wastewater Treatment Facility

The third alternative is to construct a new wastewater treatment plant (WWTP) on a site near the Little Maumelle Pump Station. Costs have been developed using an activated sludge treatment process with nitrification, recognizing that nitrification may not be required depending on the discharge location. The Utility currently utilizes similar treatment facility at its Fourche Treatment plant without nitrification, which has an excellent compliance record. Facilities for sludge stabilization would also be provided, although not perhaps initially, with final disposal or beneficial use of treatment residuals off-site.

In evaluating potential sites for a new WWTP, it is important to consider the maximum size plant that ultimately may be required with complete urbanization of the contributing area. As shown in Table 9, the study area is projected to generate 16.5 MGD in wastewater flow at full buildout. Including a buffer zone around the developed treatment facility, a minimum of 50 acres is recommended for a new plant. All of the sites being considered are approximately this size or larger. For comparison, the existing 36 MGD Adams Field WWTP is located on a 30 acre site, and the 15 MGD Fourche Creek WWTP is located on a 70 acre site.

Four sites have been selected as potential locations for the new facility. The sites are shown in Exhibit 5 and are discussed below. Each of these sites has certain costs that are related only to that particular site and will
be considered to be above the cost of the basic treatment plant. These costs are separated in this study and can be used as one factor in making a final selection of the facility's site.

Site 1

The City of Little Rock owns this property. The location of this site takes advantage of the existing infrastructure by utilizing the Little Maumelle Pump Station and the Force Main along a county road to transport wastewater to the treatment facility. In addition, the existing force main could be utilized to discharge treated effluent downstream of Murray Lock and Dam. The site is situated within the 100-year floodplain, which would mandate the construction of levees along the perimeter of the property. This site is the most visible site from the Walton Heights area, which mounted enormous public opposition during presentation of the 201 Facility Plan in April 1977. Appropriate facility planning of the wastewater treatment facility will reduce odors and aesthetic modifications should overcome public opposition.

Site 2
This location would require acquisition of private property. The location would require at least one water crossing of the Little Maumelle River. An additional crossing may be necessary to discharge the effluent in the Arkansas River. The existing Little Maumelle Pump Station could be used as head-works into the facility, since the construction of a gravity system is unlikely due to the high possibility of aerial crossings being required at the Little Maumelle River. The construction of levees around the perimeter of the property will be necessary for flood control. This location is the most secluded site.

Site 3

The influent wastewater can flow by gravity to this site. The effluent could be easily pumped from the existing Little Maumelle Pump Station to the Arkansas River above or below the Murray Lock and Dam utilizing the existing Force Main. The wastewater treatment plant could be designed to offset wet weather flows by constructing flow equalization basins; therefore, the Little Maumelle Pump Station would not require an upgrade until effluent discharge rates neared maximum pump capacity. The location would require acquisition of private property. Land use of the property is recreational with a large horse farm, including multi-purpose buildings, barn, and soccer fields.

A portion of the site could be designed outside of the 100-year floodplain; thus not requiring levees around the entire site perimeter.

Site 4

Influent wastewater could gravity flow to the site. The effluent could then gravity flow to the Little Maumelle Pump Station, and then be pumped to the Arkansas River above or below the Murray Lock and Dam utilizing the existing Force Main. The wastewater treatment plant could be designed to offset high wet weather flows by constructing flow equalization basins. As with Site 3, flow equalization basins would be designed in conjunction with the limitations of the Little Maumelle Pump Station. The location would require acquisition of private property. The current land use is agricultural. The site is within the 100-year floodplain and would require levees around the site perimeter. This site would also be visible from residential development.

4.3 COST ANALYSIS OF EACH ALTERNATIVE:

1. No action.

No additional costs would be incurred if the "no action" alternative were selected.
2. Upgrade Pumping Facilities, Construct Flow Equalization Basin, and Construct Parallel Interceptor.
Costs for Alternative 2 are presented in Table 11.

Table 11: New Interceptor and Pump Station Upgrade Cost

Item	Unit	Qty	Unit Cost	Amount
Upgrade Little Maumelle Pump Station	LS	1	\$1,500,000	\$1,500,000
Flow Equalization Basin (10 million gallon storage)	LS	1	\$1,000,000	\$1,000,000
Upgrade Cantrell Pump Station	LS	1	\$3,000,000	\$3,000,000
Parallel Interceptor-Force Main (Rural)	LF	23903	\$52.00	\$1,243,000
Parallel Interceptor - Force Main (Urban-Cantrell East)	LF	9165	\$85.00	\$779,000
Gravity Parallel Interceptor (Rural-Rebsamen-Cantrell)	LF	29421	\$225,000	\$6,620,000
Gravity Parallel Interceptor (Urban-Riverfront-Adams)	LF	20559	\$325,000	\$6,682,000
R-O-W Easement 30 ft Wide	LF	82048	\$10.00	\$820,000
Subtotal	35\% of Construction Cost			\$21,644,000
Engineering, Legal \& Contingency				\$7,575,000
Total Construction Cost				\$29,219,000
Additional Operation and Maintenance Cost	Additional pumping, line maintenance, and treatment			\$550,000

3. Wastewater Treatment Facility

It is not the intent of this study to size any component of the treatment plant, but the general cost of a treatment plant has been developed in order to compare with the alternative of transporting the wastewater to the Adams Field Treatment Facility. Presented below is the basic design
philosophy that is recommended for a new plant in the Little Maumelle River area.

Project Phasing

The proposed Little Maumelle River WWTP is projected to require a capacity of 4.4 MGD average daily flow in 2025 . Since initial flows will be in the range of $2.0-3.0 \mathrm{MGD}$, it is recommended that the initial plant be constructed with a capacity of 4.0 MGD, with the provision for easily enlarging and/or upgrading the plant in the future. The plant site should also be master planned to enable further expansion to the ultimate projected capacity of 16.5 MGD.

Desired Operating Characteristics

The required 4.4 MGD plant in the Little Maumelle River watershed will be smaller and more remote compared to the City's larger, fully integrated Adams Field and Fourche Creek facilities. Therefore, certain operating characteristics should be incorporated consistent with the more remote location and availability of city staff resources to operate and maintain the plant. These characteristics are listed below.

- The plant should be simple to operate without requiring complex procedures or intensive on-site monitoring.
- The plant should be capable of running unattended. It would normally be unattended for two shifts per day, although it should be possible to leave it unattended for longer periods if desired, such as over a weekend.
- The plant should reliably achieve discharge permit iimits over all anticipated flow and loading ranges.
- The plant should utilize conventional equipment that minimizes maintenance requirements. Equipment requiring frequent or complex maintenance should be avoided.
- The plant should incorporate the latest energy efficiency measures where feasible.
- The plant should have a low odor producing potential, and any odor generating processes or equipment should be equipped with appropriate odor control measures.
- The plant should be equipped with a Supervisory Control and Data Acquisition (SCADA) system as an extension of the City's existing SCADA system. This will allow remote monitoring and control of the entire plant from either the Adams Field or Fourche Creek facility.

Plant Design Philosophy

To be consistent with the desired operating characteristics, it is recommended that the plant be a fully aerobic process which will minimize odors and reduce operations complexity. For this reason primary clarifiers should not be used. These units would require handling raw primary sludge, a difficult material, and would increase the odor producing potential. While primary clarifiers are an efficient process common at large plants, they are not considered appropriate for small plants in the size range being considered; however, in master planning future phases, the option of adding primary clarifiers in the future should be incorporated into the site planning.

Attached growth processes, such as trickling filters, are a proven process and can be designed to achieve nitrification. However, in warm climates significant operations effort is required to control snails and filter flies, so this process is not considered appropriate for a new satellite treatment plant. Instead, activated sludge or one of its variants is recommended.

It is assumed at this point that some type of on-site sludge stabilization will be required. However, the most expedient means of sludge
management, at least in the initial phases, would be to simply convey waste activated sludge to the Rebsamen interceptor via the Little Maumelle force main, and thence to the Adams Field WWTP for final treatment. Waste sludge from the proposed 4.0 MGD plant should average $100,000 \mathrm{gpd}$ or less, and, with a solids concentration of less than 1%, it would be primarily water. While uncommon, this means of waste sludge management is being practiced in some places (e.g., San Antonio, Texas) without causing problems downstream.

For on-site stabilization, the provision of anaerobic digestion would require more operator attention and could produce fugitive odors. This process is capital intensive and complex, and is not recommended for plants under 10 MGD. Accordingly, aerobic digestion is assumed for costing purposes as the means of on-site sludge stabilization.

For peak flow management, a stormwater holding basin is proposed and is included in the cost estimate. A peak flow of 20 MGD was projected for the 2025 average daily flow of 4.4 MGD. It is assumed that a 10 MG storage basin would be provided which is the same size as calculated for the parallel line alternative.

Proposed Treatment Processes

Consistent with the above design philosophy and considering the proposed setting, a new Little Maumelle River satellite treatment plant should be a fully aerobic process with low odor producing potential. The following treatment process units are recommended:

- Refurbish existing Little Maumelle River pump station.
- Headworks with fine screening, screenings compaction and dewatering, grit removal, and grit washing.
- Conventional activated sludge system without primary clarifiers incorporating single stage nitrification (if required), fine bubble diffusers, and separate blower facility. Alternatively, an extended aeration oxidation ditch system could be used which would provide greater peak flow buffering and greater operational stability at slightly increased construction cost.
- Two secondary clarifiers incorporating modern clarifier optimization components.
- To avoid on-site storage of chlorine gas and need for a risk management plan, alternative disinfection should be used such as ultraviolet (UV) radiation or liquid sodium hypochlorite. The suitability of UV disinfection would require more detailed investigation to determine compatibility with projected peak flows and a 30/30 discharge permit limit.
- Aerobic digestion of waste sludge to achieve Class B stabilization standards suitable for land application (or an appropriate Class A process, such as heat drying, depending on the means of final disposal).
- Sludge thickening to enable use of a smaller and more efficient aerobic digester.
- Sludge dewatering and off-site transportation of sludge cake.
- Necessary support facilities such as a small operations/lab/ maintenance building, utilities, yard piping, flow distribution structures, plant water system, and flood control levee.
- Required off-site improvements to construct an entrance road to the selected site, and bring in electrical power and city water.
- Implementation of a SCADA system to allow remote monitoring and control of plant processes and conditions.

A representative cost estimate for a new 4.0 MGD WWTP on an undeveloped site incorporating the above processes is provided in Table 12

Table 12
Little Maumelle River WWTP
Construction Cost Opinion
Proposed Capacity: 4.0 MGD

Process	Representative Cost
Site Work	
Clearing and grubbing (6 acres)	$\$ 30,000$
Service roads	$\$ 20,000$
Finish grading	$\$ 35,000$
Pump Station	$\$ 1,500,000$
Headworks with Odor Control	$\$ 900,000$
Aeration Basins	$\$ 2,000,000$
Blower Facility	$\$ 300,000$
Secondary Claritiers (2 @ 85 ft dia.)	$\$ 600,000$
UV Disinfection	$\$ 800,000$
Solids Processing	$\$ 100,000$
Sludge Pump Station	$\$ 500,000$
Aerobic Digester	$\$ 1,000,000$
Thickening \& Dewatering Facility	$\$ 80,000$
Sludge Hauling Truck	$\$ 1,000,000$
Peak Flow Storage Basin	$\$ 200,000$
Support Facilities	$\$ 40,000$
Small Operations/Lab/Maintenance Bldg.	$\$ 600,000$
Flow Distribution Box	$\$ 30,000$
Yard Piping	$\$ 250,000$
Plant Water System	$\$ 1,500,000$
SCADA Instrumentation	$\$ 500,000$
Electrical work	$\$ 200,000$
Perimeter Levee	$\$ 200,000$
Offsite Construction Allowances	$\$ 200,000$
Entrance Road	$\$ 12,585,000$
Water Line	$\$ 1,888,000$
Power Line	$\$ 2,58,000$
Subtotal	$\$ 8,000$
Contractor Overhead \& Profit, 15\%	
Professional Services, 15\%	
Contingencies, 20\%	
Total Capital Cost	

Table 12 assumes that the Lake Maumelle Pump Station will be rehabilitated and used with the existing force main as the plant influent Pump Station. Also, the estimate does not include site acquisition costs, if required, or any additional costs for transporting effluent to a remote discharge point.

An estimate of annual O\& M cost for the plant is provided in Table 13.

Table 13: 4.0 MGD WWTP Estimated O\&M Costs

CATERGORY	ANNUAL O\&M COST
Power	$\$ 200,000$
Labor	70,000
Chemicals	50,000
Maintenance	50,000
Sludge Disposal	160,000
Laboratory	30,000
Regulatory/permitting	10,000
Miscellaneous	30,000
Total Annual Cost	$\$ 600,000$

A summary of the cost for Alternatives 2 and 3 are presented in the table below. This summary uses a present worth factor for the operation and maintenance cost of $6-3 / 8$ percent per year. The design period of 20 years is also used in the analysis. As can be seen, Alternative 3 is the most cost-effective. For this reason, Alternative 3, construction of a new wastewater treatment plant to serve the Little Maumelle River watershed, is selected for implementation.

Table 14: Cost Analysis Summary

OPTION	INITIAL COST	$\mathbf{0} \& \mathbf{M}$ COST	0\&M PRESENT WORTH	TOTAL PRESENT WORTH
Alternative Two	$\$ 29,219,000$	$\$ 550,000$	$\$ 6,118,000$	$\$ 35,337,000$
Alternative Three	$\$ 18,878,000$	$\$ 600,000$	$\$ 6,674,000$	$\$ 25,552,000$

4.4 ENVIRONMENTAL IMPACTS OF THE ALTERNATIVES:

The beneficial effects of all the alternatives considered will ultimately result in improved water quality in nearby receiving streams. The Alternative of "No Action" would result in the water quality of the receiving streams to stay the same or possibly deteriorate with re-occurring sanitary sewer overflows.

No long term adverse primary or secondary environmental impacts wouid result from any of the alternatives. During the construction of the proposed lines, shortterm adverse impacts will result from the actual construction process. However, provisions will be included in the construction of the project to minimize these impacts.

Some of the proposed improvements and sewer lines will be located in wetland areas and floodplains. These areas will be identified and the appropriate permit will be applied for. The sewer lines will be underground and will not impact the wetlands. The Utility has a nationwide permit to construct lines in these types of areas. A copy of this engineering report will be provided to the Corps of Engineers with a request to include this project under the nationwide permit.

Manholes in the wetlands will protrude above ground to keep water out of the sewer lines during high water. These manholes will not adversely affect the wetlands or the flood plain. Flood control levees will be constructed around the
perimeter of the wastewater treatment facilities removing the hazard of flood inundation.

Long-term beneficial impacts also include capability to meet NPDES requirements enforced by ADEQ.

4.5 REASONS FOR ACCEPTING / REJECTING ALTERNATIVES:

Alternatives were evaluated based upon cost effectiveness, degree of operation/maintenance ease, and impacts on the environment. All the construction alternatives would provide the necessary sewer service and should have minimal impacts on the environment.

Alternative 3, construction of a new treatment facility, was selected because of cost effectiveness.

SECTION V

ENVIRONMENTAL SETTING

5.1 GEOLOGY:

Generally, bedrock in the proposed sewer line locations is very deep. None should be encountered in the construction of the project.

5.2 PHYSIOGRAPHY AND TOPOGRAPHY:

The topography of the Little Maumelle River Watershed is undulating. Gentle flat slopes are present in the agricultural areas of the Little Maumelle River, while steep slopes exceeding eight percent are present near the areas of Pinnacle Mountain. Of the eleven subbasins most exhibit relief beyond 300 feet, except for subbasin 60010. The majority of subbasin 60010 lies within the 100 -year floodplain. As such, the wastewater flows from the Little Maumelle River Watershed converge through subbasin 60010.

Table 13 gives the average peak and low elevation, to the nearest ten-foot interval, for each subbasin within the Watershed. Tributaries within each subbasin are also shown.

Engineering \& Cost Report for Little Maumelle River Subbasin Sewerage Study

Table 15: Topographic Range and Tributaries

Sub- basin	Highest Elevation	Lowest Elevation	Tributaries
60010	270	250	Little Maumelle River
60100	530	260	Little Maumelle River
60200	810	260	Little Maumeile River
60301	930	250	Little Maumelle River
60302	940	260	Little Maumelle River
60400	1050	290	Little Maumelle River
60500	680	320	Little Maumelle River Fletcher Creek
60600	810	320	Little Maumelle River Ferndale Creek
60700	740	410	Little Maumelle River Hog Creek
60800	760	290	Little Maumelle River Neal Creek Kennerley Creek
60900	860	280	Nowlin Creek

Note: Elevations are NGVD 1929 to the nearest 10 feet

5.3 SOILS:

The "Soil Survey of Pulaski County" indicates the majority of the soils in the Watershed are composed within the Carnasaw-Mountainburg association and the Sallisaw-Leadvale association. The low- lying area within Subbasin 60010 indicates soil within the Rilla-Keo, Perrry Norwood, and Bruno-Crevasse associations.

The Carnasaw-Mountainburg association is well drained, gently sloping to steep, moderately deep and shallow, loamy and stony soils on hills, mountains, and ridges. It is predominantly clayey material with bedrock depths of 40 inches or less in places. The soils exhibit low permeability, but are moderately deep over bedrock. Typically this soil can support sewage lagoons when the bedrock strata is beyond forty inches from the surface and where slopes do not exceed seven percent.

The Sallisaw-Leadvale association is well drained to moderately well drained, nearly level to gently sloping, and with deep, loamy soils in valleys. Shallow excavations can be made encountering coarse fragments. This soil does not adequately support septic tank absorption fields. Sewage lagoons will exhibit moderate permeability above twenty-seven inches in depth. High permeability is present beyond twenty- seven inches and when slopes exceed seven percent.

Rilla-Keo association is well drained, level to gently sloping, with deep, loamy soils on bottomlands. Perry-Norwood Association ranges from poorly drained to well drained, level, deep, clayey and loamy soils on bottomlands. BrunoCrevasse Association is excessively drained, level to nearly level, deep, loamy and sandy soils on bottomlands. Suitability of septic tank absorption fields and sewage lagoons for these soil associations ranges from moderate to unfavorable.

5.4 CLIMATOLOGY:

The Little Rock planning area lies in a semi-humid region characterized by long summers, relatively short winters, and wide range of temperatures. Extremes in air temperatures may vary from winter lows near 0 degrees Fahrenheit, to summer highs above 100 degrees Fahrenheit. The growing season averages 244 days per year.

Average pan evaporation is about 54.9 inches for the planning area. Lake evaporation averages about 69 percent of the Class A pan evaporation. Precipitation is well distributed throughout the year with the driest periods occurring during the late summer and early fall. Mean annual precipitation in the area ranges from 48 to 52 inches per year.

5.5 HYDROLOGY:

Little Rock's municipal water comes from Lake Maumelle and Lake Winona. The proposed project will have no impact upon the water supplies.

5.6 RECEIVING STREAM:

The existing treatment facilities discharge into the Arkansas River. No increased flow will result as a result of the proposed project. At the USGS gauging station located at Murray Dam in Little Rock, the Arkansas River drainage area is 158,030 square miles.

The water quality of the Arkansas River varies within its watershed. The forested perimeter areas have the highest water quality with the quality declining as the water flows through pastures and cropland. The quality has shown improvement in the past 25 years due to the completion of the McClellan-Kerr Navigation System and the more stringent water pollution laws.

The maximum-recorded flow at the Broadway Bridge gauging station was 536,000 cfs in May of 1943, and the minimum flow was 14 cfs in October of 1978. The average recorded flow since 1927 is 40,270 cfs. Mean monthly averages from 1970-1984 varied from a low of 12,290 cfs in July to 70,300 cfs in October.

The 7Q10 flow for the 1970-84 period amounted to 684 cfs. Minimum instream flows have been proposed, based upon interstate compacts (IC), fish and wildlife (FW) and navigation (N) requirements. No additional flow to the receiving stream will occur as a result of the proposed project. The proposed minimum instream flows are as follows:

Table 16: Arkansas River Flow Requirements

NOV.-MAR	APR.-JUNE	JULY-OCT.
FLOW, REQM'T	FLOW, REQM'T.	FLOW, REQM'T
$4,361 \mathrm{cfs}, \mathrm{FW}$	$6,778 \mathrm{cfs}$, FW	$3,000 \mathrm{cfs}, \mathrm{N}$

5.7 BIOLOGICAL ELEMENTS:

There are no known threatened or endangered species in the project area. Although some of the project area is considered to be in wetlands, the project will not adversely impact the wetlands. Wildife in this area consists of the normal species that inhabit Arkansas; rabbits, squirrels, deer, etc. The project will not hinder the wildlife once it is built.

5.8 CULTURAL ELEMENTS:

There are no known historical structures or landmarks in the project area. No archeological survey has been performed. The wastewater treatment facility located at Site 1 has been converted into park space by the City of Little Rock. Site 1 was utilized as the Pulaski county penal facility, which utilized agricultural practices.

5.9 NATIONAL NATURAL LANDMARKS:

There are no known national natural landmarks in the project area.

5.10 ENVIRONMENTAL SENSITIVE AREAS:

The project is located in an area containing marginal wetlands, and a Corps of Engineers' 404 permit determination must be made. A determination will be requested of the Corps.

There are no important farmlands, wild and scenic rivers, coastal zones, barrier islands, natural parks, national forests or refuges near the project location.

5.11 SOCIO-ECONOMIC:

The population projections presented within this study dictate growth for the Watershed through the design period. Without wastewater facilities in place for the projected growth, emergency ordinances could be enacted to restrict developments, stunting potential economic investment within the western city limits and Pulaski County.

Construction and operation of wastewater infrastructure will create and sustain employment. Increased maintenance and operational requirements for the proposed improvements will create long term employment for the design life of the infrastructure.

5.12 COMMUNITY NEEDS:

In addition to regulatory and legal issues involved with this project, the community needs an avenue to effectively transport and treat wastewater within the community. Continued overflows will result in an unsanitary community.

5.13 LAND USE:

Land use for the project area was provided on Exhibit 3.

SECTION VI ENVIRONMENTAL IMPACTS

6.1 TRAFFIC DISRUPTION:

There will be some effects on traffic within project area since the project will be constructed near the residential areas and streets. These effects are considered minimal.

Alternative 2 will cause traffic disruption along Highway 10, which serves as a main arterial for traffic to downtown Little Rock.

6.2 EROSION AND SEDIMENTATION:

Erosion during the construction of the proposed project is not anticipated to be a problem. The contractor will be required to seed all areas he disturbs during construction. The watercourses should not experience any adverse siltation or sedimentation.

6.3 LOSS OF VEGETATION:

Vegetation will be removed in the areas where construction of the proposed project will occur. Stumps will be burned and/or buried on site. Any excess soil will be taken off site and disposed of in a satisfactory location.

6.4 NOISE:

The construction area is near residential and commercial areas and some construction related noise will be unavoidable. This noise will not have an adverse impact on any of these areas.

6.5 ODOR:

Minimal odors are expected from the construction of this project. Final design of the wastewater treatment facility will contain provisions to reduce or eliminate odors.

6.6 DUST CONTROL MEASURES:

The contractor will use water trucks to wet the soil and keep the dust from leaving the construction site. No dust control issues should be related to completed facilities and infrastructure.

6.7 BY-PASSING:

No bypassing will occur.

6.8 AESTHETIC VALUES:

The Utility is cognizant of the areas where the general population is concerned with aesthetics. The Utility will address the concerns during the final design phase.

6.9 LONG-TERM AND SECONDARY IMPACTS OF GROWTH:

The current infrastructure cannot accommodate wastewater flows from the Watershed. Overflows have been documented by the Utility, and the Utility is involved in a lawsuit with the Sierra Club regarding chronic sanitary sewer overflows within the project area.

Individual wastewater treatment facilities could be installed without monitoring in sparsely populated areas. The soils in the project area are not generally conducive to septic tank systems. Low permeable soils and individually operated package treatment system will degrade water quality, contaminate water wells, or impair clean water lakes.

SECTION VII
 COORDINATION AND DOCUMENTATION

A copy of the Environmental Information Document will be sent to the following agencies for their input and/or comments:

Little Rock District, Corps of Engineers
Arkansas Game \& Fish Commission
State Clearinghouse
Arkansas Department of Parks \& Tourism
U.S. Fish \& Wildlife Service

State Historic Preservation Officer
Arkansas State Board of Health
A notification of the availability of the Environmental Information Document will be sent to the following agencies for their comments:

The Honorable Tim Hutchinson
The Honorable Blanche Lincoln
The Honorable Vic Snyder
U.S Department of Agriculture, SCS

Council on Environmental Quality
U.S. EPA, Region VI

Central Arkansas Planning and Development District
State Archeologist
Arkansas Natural Heritage Commission
Arkansas Wildlife Federation
Arkansas State Geologist
Arkansas Soil \& Water Conservation Commission
Arkansas Waterways Commission
Arkansas Highway \& Transportation Department
Arkansas Forestry Commission
Arkansas Industrial Development Commission
Arkansas Department of Parks \& Tourism
Arkansas Natural \& Scenic River Commission
League of Women Voters
Arkansas Water Resources
Ozark Society and Sierra Club

SEWER SERVICE STUDY NORTHWEST LITTLE ROCK

SEWER SERVICE STUDY NORTHWEST LITTLE ROCK

APRIL, 1980

Little Rock Office of Comprehensive Planning Nathaniel M. Griffin, Director

Prepared By:
James C. Lawson
Chief of Advance Planning Office of Comprehensive Planning
J. E. Gardner, P.E.

Manager Little Rock Wastewater Utility

TABLE. OF CONTENTS

SECTION PAGE
1.0 AN INTRODUCTION TO THE ISSUES 1
2.0 GEOGRAPHICAL LOCATION 3
3.0 LAND USE AND POPULATION 4
3.1 LAND USE 4
3.2 POPULATION 4
4.0 EVALUATION OF SEWER SERVICE IN NORTHWEST. 7 Little rock
4.1 SEWER SERVICE 7
4.2 PROPOSED MAUMELLE TREATMENT PLANT 7
4.3 INTERIM IMPROVEMENTS 8
4.4 PLANNED CAPItAL WASTEWATER UTILITY PROJECT. 8
5.0 SUburban development plan 10
6.0 CAPACITY AND DEVELOPMENT POTENTIAL 12
6.1 RESIDENTIAL DEMAND. 12
6.2 NONRESIDENTIAL DEMAND 12
6.3 DEVELOPMENT POTENTIALS 12
7.0 SANITARY SEWER COMMITTEE POLICY 15
8.0 SEWER SERVICE ALTERNATIVES 16
8.1 ENGINEERING OPTIONS 16
8.2 PLANNING OPTIONS 19
9.0 CONCLUSION 21
APPENDIX A SEWER POLICY STATEMENT 22
APPENDIX B GARVER'S LETTER 25

1.0 AN INTRODUCTION TO THE ISSUES

Little Rock is confronted with an important policy issue, the resolution of which will go far toward determining the location and character of future suburban development. This issue arises within the context of identified sewer capacity limitations in northwest Little Rock coupled with significant pressures for new residential development in this area. It seems clear that in the near future, littie Rock will have to make a fundamental decision about how and under what circumstances future development will be allowed to proceed in northwest Little Rock.

Historically, Little Rock has responded to development trends extending sewer and water facilities and constructing needed street improvements on a demand basis as resources permit. Nowhere is this approach to growth more apparent than in northwest Little Rock which has been the community's preferred location for new residential and commercial development over the past twenty years.

As long as sewer facilities were extended within the watershed served by the Adams Field Treatment Plant, growth posed no overriding public utility problems for the community. In recent years, however, development has pushed into the watershed of the Little Maumelle River, thereby necessitating the construction of a costly system of lift stations and force mains to allow additional residential construction in northwest Little Rock to continue. Subsequently, Sewer Improvement District \#222 was estabiished by. local property owners to extend sewer service to prospective subdivisions and the area was annexed to the City.

More recently, several zoning requests which, if granted, would absorb a significant proportion of the entire sewer capacity made available by the pumping facilities serving District \#222, have been considered by the Planning Commission and Board of Directors. These requests surfaced the issue of how much additional development could occur in northwest Little Rock without overloading the sewer system. The Sanitary Sewer Committee has determined that existing and projected improvements can accommodate a total of 11,000 persons within the service area of these pumping stations. Developer expectations for growth in this area, however, are substantially higher.

This study has been undertaken by the Office of Comprehensive Planning at the request of the Board of Directors to ascertain how and under what conditions future land use approvals will be granted in this area. This is a complex and critical issue, one which raises numerous issues of public policy, including the following:
1.) Finanacial inability of the city to undertake major new sewer improvements beyond commitment to existing system and expansion to the southwest.
2.) Lack of federal aid program to assist the community in obtaining wastewater facilities for anticipated growth.
3.) Availability of significant sewer capacity to accommodate growth in the central and southwestern suburbs.
4.) Equity of investing in additional sewer capacity for the Northwest Sector while sufficient capacity to accommodate growth to the year 2000 is available in the West and Southwest Sectors.
5.) Willingness of the City to use sewer facilities as a determinant of future land use patterns, i.e. public utility extensions as a growth management tool.
6.) Absence of sewer service to the Pankey community.
7.) Overriding constraints to the provision of additional sewer service to northwest Little Rock in the absence of a new treatment plant.
8.) Problems associated with redirecting the primary thrust of suburban growth in Little Rock from the Northwest to the West and Southwest Sectors.

These and other policy questions are addressed in this report. Our objective is to set forth the facts and to clarify the issues to bring about an equitable solution of the problem. A number of alternative options are available, and it may be that a combination of several may be the appropriate course for the Little Rock Board of Directors and the Sanitary Sewer Committee to take. The Office of Comprehensive Planning, however, believes that the most reasonable approach for the City to take would be to utilize its land use control powers to establish development densities which would not overload the existing system, together with a careful assessment of the pros and cons of investing additional public funds for sewer expansion in this area.

2.0 GEOGRAPHICAL LOCATION

The service area of the pumping stations serving District \#222 occupies approximately 2,400 acres in extreme northwest Little Rock. Study area boundaries are irregular, but encompass the Pebble Beach, Pleasant View, Pleasant Forest subdivisions and portions of Pleasant Valley and Walton Heights subdivisions, together with the Pankey area. The District is roughly bounded on the north by Southridge and Rivercrest Drives, on the east by Rodney Parham Road and on the south and west by the watershed boundary of Ison Creek and Taylor Loop Road. (See Figure 1)

The area is further subdivided in three (3) drainage areas as follows: Hinson Road - 394 acres, Taylor Loop - 1,278 acres, Highway 10-744 acres.

3.0 LAND USE AND POPULATION

3.1 Land Use

This 3.8 square mile section of northwest Little Rock is developing as a predominantly single family residential environment with Pleasant Valley and its golf course perhaps best exemplifying the area's image as one of large and attractive homes in a landscaped suburban setting. Lot size in recently approved subdivisions range upwards from a minimum of $1 / 4$ acre to $1 / 2$ acres and more in Pleasant. Valley and Longlea.

Development concepts in various stages of approval and construction will continue the established land use pattern except along the Highway 10 Corridor where multi-family, commercial, and office projects have been proposed. Existing multi-family and non-residential 1 and uses in District \#222 are scattered along the Highway 10 frontage, but do not constitute a significant land use except at Ivesville just west of Pankey.

As of March, 1980, only 40% of the District has been urbanized and more than two (2) square miles remain available for development. An estimated twenty-five (25) percent of this area, however, consists of public land, steep slopes, areas located above the highest elevation which can be served by the municipal water system, or otherwise restricted for urban use.

3.2 Population.

The population of District \#222 approximates 5,000 persons with a sufficient number of improved, but still undeveloped single family lots (558) to increase that number to 6, 800 persons. Residential densities amount to 6.5 persons per developed acre, a figure which will rise as the remaining improved lots are built on. When Pleasant Valley Golf Course, recreational facilities owned in common by subdivision residents and street rights-of-way are taken into account, the prevalent residential density within this portion of northwest Little Rock approximates two (2) single family homes per gross acre.

Future land use in the remaining 1,462 undeveloped acres of District \#222 will be a factor of utility capacity, market forces, topographic constraints, and the Suburban Development Plan. At this time, developers, the Office of Comprehensive Planning, the Sanitary Sewer Committee, and the City Board of Directors are all in agreement that no major shift in prevailing land use patterns should occur. The primary issue in question (aside from the location of a commercial complex to serve everyday shopping needs of residents) is the density and configuration of future residential construction. Statistical material relating to existing land use assembled by the Office of Comprehensive Planning should be of considerable value in quantifying previous development patterns and identifying options and appropriate densities for future developments.

TABLE 1

RESIDENTIAL DEVELOPMENT AS ÖF 1980

SINGLE FAM	LOTS	OTHER	RESIDENTIAL LOTS ${ }^{(1)}$	TOTAL LOTS
Developed	1,515		14	1,529
Unbuilt	558		-	558
Total	2,073	.	- 14	2,087

(1) Mobile homes, duplexes, apartments

TABLE 2
ESTIMATED POPULATION
CURRENT ${ }^{(1)}$
4,969
ANTICIPATED ${ }^{(2)}$

ULTIMATE ${ }^{(3)}$
11,000
(1) Estimate of 3.25 persons per unit; source ULI - the? Urban Land Institute
(2) Assumes construction of all vacant lots with improvements in place.
(3) Sanitary Sewer Committee policy limits

Source: Office of Comprehensive Planning Land Use Survey, March 1980.

TABLE 3

LAND USE 1980

LAND USE TYPE	$\frac{\text { ACRES }}{}$	PERCENT
Single Family (1)	925	38.4
Multi Family (2)	2	.1
Public-Semi Public	9	.3
Office	0	.0
Commercial	9	.3
Industrial	9	.3
Undeveloped	2,416	$\underline{60.6}$
Total	100.0	

Source: Office of Comprehensive Planning
(1) Includes improved lots and part of Pleasant Valley Golf Course
(2) Includes duplexes and multi-family

4.0 EVALUATION OF SEWER SERVICE IN NORTHWEST LITTLE ROCK

4.1 Sewer Service

The present master plan for expansion of the Little Rock sewer system is the "Comprehensive Sanitary Sewage Plan for the Little Rock Metropolitan Area, 1969-1980" as published by Metroplan in 1969. In response to the 1973 Annexation Referendum which added approximately 55 square miles to the corporate imits of Little Rock, the Wastewater Utility staff began planning to provide urban ievel sewer service to this greatiy enlarged city by implementing portions of this plan. Although the annexation and a subsequent similar referendum were both declared invalid by the Arkansas Supreme Court, the Utility has continued with plans for providing services to this area, much of which has voluntarily annexed to the City in recent years.

4.2 Proposed Maumelle Treatment Plant

Planning began simultaneously under two separate consultant contracts, one to serve the northwest part of the city and the other to serve the southwest part of the city. Both planning efforts quickly resulted in filing for Federal grant assistance and awarding of a USEPA Step I grant for each area. The preliminary steps in each area indicated a need for two new wastewater treatment plants for the city. One would be required at the mouth of the Valley of the Little Maumelle River to serve the growing northwest little Rock area and the other would be located somewhere along the bank of Fourche Creek to serve the growing southwest Little Rock area. In 1974, property owners in the northwest Little Rock area formed Sewer Improvement District \#222 which was intended to construct the sewage collection system tributary to the proposed Maumelle Treatment Plant. Previousiy, Sewer Improvement District \#142 had been formed for similar purposes to construct the sewage collection system in southwest Little Rock for the new Fourche Plant. The planning for the Fourche Plant was delayed due to continuously changing water quality requirements affecting wastewater treatment discharging into Fourche Creek.

In 1976, the Utility purchased a site for the proposed Ma umelle Plant and made public plans for construction of a small (1.25 MGD) secondary treatment plant which would serve the northwest Little Rock area including some existing homes presently on the sewer as well as provide growth capacity for existing suburban development on septic tanks and land planned for future residential development. The homes to be served by the new plant which were presently on the sewer were served by small sewage pumping stations which pumped wastewater over the ridge line into the Grassy Flat Creek sewage collection system which then flowed to the Adams Field Treatment Plant. The planning included this existing service in order to eliminate the small, inefficient pumping stations and remove this load from the Adams Field Plant which was operating at near maximum capacity.

A strong public reaction to the proposed Maumelle Plant arose from northwest area residents. These residents formed an action group called "Community Action for Maumelle Preservation" (CAMP) and lodged their protest with the United States Environmental Protection Agency who was funding the preliminary study and would be subsequently asked to grant construction aid for the proposed plant. EPA's response to the protest was to undertake preparation of an Environmental Impact Statement to answer the questions raised by CAMP and others. The conclusion of the EIS was that the project, as conceived, would not meet the regulations to allow use of EPA grant funds to construct a wastewater treatment plant due to a lack of demonstrated existing pollution problems. The EIS concluded by recommending that no subsequent grants be awarded for this project but failed to address the environmental questions which arose in the protest.

At the request of the Little Rock City Board of Directors, the Sewer Committee decided not to build the proposed plant on the site previously purchased for this purpose and sold the site back to the original owners, while declaring that a site for a proposed plant site acceptable to all concerned be sought. Due to the lack of Federal Grant assistance, the Utility turned its attention to the Fourche project. The preliminary study for the Fourche project was completed in 1978 which recommended construction of a new 15 MGD wastewater treatment plant on the bank of the Arkansas River in the vicinity of the Little Rock Port Industrial Park and that the wastewater from the existing and anticipated growth in Southwest Little Rock be piped to this plant for treatment and discharged directly to the Arkansas River. The conclusions of this preliminary study were approved by EPA and a subsequent grant for detailed design work was awarded in July, 1979. Present plans are for design to be completed in late summer, 1980, a construction grant awarded by September 30, 1980 , and commencement of construction on this facility in early'1981.

4.3 Interim Improvements

At the same time as a "stop gap" to the delay in construction of the Maumelle Plant, the Utility proceeded with design and construction of a series of three new pumping stations in the Maumelle Valley. These pumping stations were intended to maximize the availability of wastewater handling capacity of the sewer system in the area without construction of a new wastewater treatment plant. These new stations were completed in 1979 at a cost of $\$ 600,000.00$ all of which was from Utility construction funds without any Federal grant benefits. Utilization of the new stations is anticipated in the spring of 1980 on completion of a "scaled down" Sewer Improvement District 222 which was designed and is being constructed to utilize these pumping stations in a limited service area.

4.4 Planned Capital Wastewater Utility Projects

The present capital improvement plans of the Wastewater Utility are to construct the new Fourche Plant and its associated sewer lines at an estimated cost of 25 million dollars, 75 percent of which is U.S. EPA grants and 25 percent of which will be wastewater

Utility funds, and also to enlarge the present Adams Field Plant at an estimated cost of 15 million dollars also benefiting from 75% EPA grants. Both of these projects are planned to be completed by 1985.

The local funds which will be required for these two projects are in excess of 10 million dollars. Present Wastewater Utility reserve funds are approximately 2 million dollars and the present sewer rates which were raised approximately 37% in December, 1979, will support a revenue bond issue of 4 to 5 million dollars. This means that a subsequent sewer rate increase of major proportions is necessary just to meet the balance of local funds required for these two projects. For this reason it is apparent that no subsequent multi-million project can be funded by the Wastewater Utility until at least after 1985.

The existing wastewater facilities in the Maumelle Valley portion of northwest Little Rock, although admittedly temporary and inadequate for the projected needs of the area, will likely be required to serve without supplement or replacement until the late 1980's.

5.0 SUBURBAN DEVELOPMENT PLAN

A fundamental assumption of the Suburban Development Plan is that no sewage treatment plant will be constructed within the LittTe Maumelle drainage basin prior to the Year 2000 and that future urbanization in northwest Little Rock will be restricted to what can be reasonably accommodated by the existing sewage system.

The Suburban Development Plan proposes a predominantly single family residential land use pattern for the northwest Little Rock area. Residential densities expected to range from as many as four (4) units per acre in conventional subdivisions to low density developments in rugged areas with one (1) home per two (2) or three (3) acres. In addition, the Plan envisions three (3) high intensity urban concentrations. The first of these is situated at the intersection of Highway 10 and Rodney Parham Road which is suggested as the Tocation of a cluster of suburban offices, neighborhood commercial uses, and attached residential development. A second concentration is suggested at Ivesville in the vicinity of Highway 10, Taylor Loop Road intersection approximately two (2) miles west of Rodney Parham Road. This node would provide for expansion of existing highway commercial uses together with areas designated for attached residential development. Further, a small concentration of single family attached residences is suggested in the vicinity of the Hinson Road and Beckenham Drive. Pankey is to remain residential.

Urbanization in the Northwest Sector is expected to be 1 imited to the approximately two (2) square miles of vacant land within the boundaries of the service area which have been provided with sewer service and remains available for development. This process will have run its course by the mid to late 1980's, at which time there will be 4,000 to 5,000 new residents in the area, development will extend as far west as Tay or Loop Road, and all available sewer capacity will have been exhausted.

At that point, the primary thrust of urban development is expected to shift to the West and Southwest Sectors. Several factors are set forth as justification for this rather dramatic redirection of Little Rock's anticipated pattern of development. These factors d's outined byy the suburban Plan are:
1.) "the rugged, mountainous terrain which parallel the Arkansas River Bottom on the north and the mountainous region extending from the Pleasant Valley area to the northwest."
2.) "the finite capacity of existing sewer facilities serving the area and limiting future urbanization to a point just beyond the future alignment of an Outerbelt West..."
3.) "the strong desire and tendency for quality development to extend westward from the Pleasant Valley area."
Topographic constraints are an important planaing-consideration in this area inasmuch as steep slopes preclude most monresidential uses, increase development costs, and reduce structural densities. A more important development problem for northwest Little Rock, however, is utility capacity, inasmuch as only limited additional building can occur without a modern sewage treatment system.

Two (2) proposed "development policies" recommended for adoption as part of the Suburban Development Plan specifically address this question and further clarify the public issues at stake.

No. 9 Utility Infrastructure Investment

This policy envisions the need to "utilize public facility construction as a growth management tool by requiring investment in sewer...construction to be in conformance with the suburbanDevelopment plan". This is a fundamental principal of sound land use planning, and one which Little Rock is already implementing as it seeks to coordinate utility construction land use commitments, and extensions of City boundaries.

No. 16 Wastewater Treatment Plant Location

Little Rock is focusing all available federal and local sewer construction funds toward the construction of a new wastewater treatment plant to serve the Fourche Creek area. A primary consequence of this policy will be "to shift development from the Northwest toward the West and Southwest Sectors of the suburban development area. Serviced land available for develonment in the Northwest Sector is in iimited supply..." As yet, the implication of the city's inability to provide utility services sufficient to accommodate future growth in Northwest at past levels is not well understood. Nevertheless, it seems essential that the Suburban Development P lan reflect this recent public action inasmuch as it will take as long as a decade to provide additional wastewater facilities to serve this area.

Both Team Four and the Office of Comprehensive Planning believe that further significant urban development to the northwest along Highway 10 is precluded in the absence of a fundamental shift in public policy and a major commltment of resources to fund and construct the Little Maumelle Sewage Treatment Plant or other additional wastewater facilities to serve the Maumelle Valley. In the event that such a commitment is made, the suburban Development plan would have to be amended in anticipation of renewed growth to the northwest.

6.0 CAPACITY AND DEVELOPMENT POTENTIAL

6.1 Residential Demand

The land use survey as outlined in Section 2 of this report identified an existing residential poputation of 4,969 persons. The survey also counted all vacant lots with improvements in place. These Tots were counted, insomuch as approval has been granted by the city and residential construction could begin immediately. These lots were assumed to have a density of one (1) unit per lot equaling a population of 3.25 persons per unit.

Adding the potential population of the developed lots to the existing population of the area results in a total developed population of 6,783 persons. This total equals that portion of the 11,000 person capacity which has been already allocated.

6. 2 Non-Residential Demand

Sewer demand for commercial and office uses must be based. on the size of the use which is naturally related to the number of potential sewer users. The Wastewater Utility staff determined from its calculation that for each 1,000 square feet of office or commercial uses, the equivalent demand of 1.91 persons would be served. For a 2,000 square foot office use, there would be an equivalent of 3.82 persons being served, of which is rouginy equivalent to the 3.25 persons that would be assumed for a 2,000 square foot residential unit.

The 1 and use survey had revealed an approximate total of 600 square feet of office use and a total of 74,300 square feet, σf commercial uses. These two (2) classifications would then equate to a sewer demand equivalent to 143 persons. This 143 person total should then be added to the previousty residential demand of 6,783 persons to set a grand total of a 6,926 person demand on the sewer service system.

6. 3 Development Potentials

Table 4 gives a breakdown of the total additional persons who can be added to the Little Maumelle Sewer Service System and not exceed the capacity recommended by the Sanitary Sewer Committee. This total of 4,074 persons could be accommodated throughout the undeveloped 1096.5 acres at a single family density of 1.14 units/acre. The 1096.5 acres was a calculation arrived at by subtracting 25% of the land area out of the remaining undevelopable land of the valley. The wastewater staff determined that 25% of the area was undevelopable due to steep slopes and land at too high of an elevation to be served by municipal water.

The ultimate density figure of 1.14 units/acre mentioned previously, is merely an estimate. There could be as much as a $1 / 2$ unit/acre deviation due to population estimates and land coverage estimates. A precise density figure could be determined if a detailed engineering analysis was performed.

Table 4 also shows population and development estimates using 3.0 persons per unit and 2.75 persons per unit. These estimates were included merely for comparisons. The staff feels that 3.25 persons per unit is a good estimate for a suburban area with many parents in the child rearing ages. However, since this is just an estimate it was felt that other estimates should be explored.

As the chart denotes, the unit per acre figure for remaining development still does not exceed 2 units per acre when you use even the lowest household size estimate of 2.75. The overall effect, then, of a lower household size is not that significant.

Table 5 illustrates the total number of new residential units which could be constructed and not exceed the 11,000 person capacity. The chart shows that 1,250 single family units can be constructed. Again, for comparison purposes, the 3.0 persons per unit and 2.75 persons per unit were used. The result was 1,579 remaining units and 1908 remaining units respectively.

DEVELOPMENT CAPACITY little Maumelle valley

EXISTING POPULATION	REMAINING OPULATION CAPACITY(4)		$\begin{gathered} \text { UNDEVELOPED } \\ \text { LAND }(5) \\ \hline \end{gathered}$		DEVELOPMENT POTENTIAL	
6,926 (1)	4,074	Persons	1,462	Acres	1.14	Units/Acre ${ }^{(6)}$
6,261(2)	4,739	Persons	1,462	Acres	1.44	Units/Acre ${ }^{(7)}$
5,740 (3)	5,260	Persons	1,462	Acres	1.74	Units/Acre(8)

(1) Total of all persons counted and an assumption of 3.25 persons per developed lot and nonresidential uses calculated as 1.91 persons per 1,000 sq. ft. of floor space.
(2) Total of all persons counted and an assumption of 3.0 persons per developed $10 t$ and nonresidential uses calculated as 1.91 persons per $1,000 \mathrm{sq}$. ft. of floor space.
(3) Total of all persons counted and an assumption of 2.75 persons per developed lot and nonresidential uses calculated as 1.91 persons per $1,000 \mathrm{sq}$. ft. of floor space.
(4) Existing population subtracted from the assumed 11,000 person capacity of the Valley.
(5) Land in which improvements have not been installed.
(6) Development potential assuming a density of 3.25 persons per unit and assuming that 25% of the 1 and is undevelopable due to steep slopes and high elevations.
(7) Development potential assuming a density of 3.0 persons per unit and assuming that 25% of the land is undevelopable due to steep slopes and high elevations.
(8) Development potential assuming a density of 2.75 persons per unit and assuming that. 25% of the land is undevelopable due to steep slopes and high elevations.

TABLE 5
REMAINING UNIT CAPACITY

ASSUMED PERSONS
PER UNIT
(EXISTING \& PROJECTED)
3.25
3.00
2.75

POTENTIAL
SINGLE FAMILY RESIDENTIAL UNITS

1,250
1,579
1,908

7.0 SANITARY SEWER COMMITTEE POLICY

The policy statement of the Sanitary Sewer Committee (see Appendix A) passed February 17, 1980, states that because of the financial commitments to the construction of the new Fourche Treatment Plant and modernization of the existing Adams Field Plant, there are no monies to construct a plant for the Little Maumelle Valley in the near future.

The policy statement further emphasizes that the existing pumping facilities in the Little Maumelle River Valley have a limited capacity which cannot be expanded due to equally ilimited capacity in the receiving sewers in the Fourche Creek Valley collection system. The capacity, then, for the Little Maumelle area, is estimated to be between 6,600 and 11,000 persons.

The policy statement then..."declares its policy to exercise what controls are necessary and proper and in the general public interest, to ensure that the capacity of the existing pumping stations is not exceeded before the properties they were constructed to serve have had the opportunity to connect to the sewer. The controls to be exercised are as follows:

1. No approval for sewer service will be given for properties outside the planned "gravity service" areas of these facilities. The boundaries of these service areas are depicted on the map attached to this policy statement.
2. The Committee hereby urges the Little Rock

Planning Commission and the Little Rock Board of Directors to consider the population limits
\therefore of these pumping facilitiesin their zoning recommendations and decisions, with the goal of not exceeding 11,000 persons or population equivalent in the service area of these facilities. The Committee recognizes the need for a land-use mixture, and does not insist on a uniform population density throughout the service area, providing that the total population does not exceed the maximum 11,000 person goal.
3. These controls will be effective until such time as a definite plan for additional or replacement facilities for sewer service in the Little Maumelle River Valley has been formulated, is acceptable to the citizens of the city and the appropriate State and Federal Pollution Control authorities, and a time schedule and financing plan exists to have the additional or replacement facilities in service before the existing facilities are overloaded.

8.0 SEWER SERVICE ALTERNATIVES

The City of Little Rock can coordinate sewer service extensions with land use control approvals in northwest Little Rock in one (1) of two (2) ways. The first way would be to work toward an engineering solution to this problem, committing the city to provide sufficient sewer capacity to allow continuation of historic growth patterns. This approach would involve constructing a new treatment plant. and supplementing the existing system in various ways. It might also necessitate a temporary moratorium on development if available sewer capacity is exhausted before the system improvements can be brought on line. use regulapproach would be for the city to utilize its 1 and accommodated by the existing sew development could take place.

8.1 Engineering 0ptions

Several engineering options are outlined below. A variety of technical solutions to the problem are possible, including developing a series of small package plants, and constructing a new sewage treatment facility. Any one of these proposals, however, would increase overalt capacity in the Littie Maumelle Valley sufficient to allow higher density development than would otherwise be possible. Before the City of Little Rock could undertake one or a combination of these approaches, however, an engineering study to identify potential project costs, system tradeoffs, and a timeframe for completing the necessary improvements will be needed.

Alternative \#l - Individual Treatment Facilities

The Rockefeller Foundation has prepared a report entitled "Alternative Wastewater Management Systems and their Applicability to Arkansas" which was published in December, 1979. This report addresses several types of individual wastewater treatment systems of which one or several could possibly be used in the Little Maumelle River Valley. Some of the systems which could be applicable are septic tanks, leaching trenches, aerobic treatment systems and several others that would have to meet with the Health Department's approval on a case by case basis.

This alternative would serve to limit development due to the fact that individual treatment systems generally require more land area than exists in a "typical" subdivision lot (75 feet $X 150$ feet).

Alternative \#2 - "Package" Plants

Prefabricated "package" wastewater treatment plants capable of serving almost any number of homes are commercially available. Several are now in use in the Little Rock area significantly the Otter Creek Subdivision in Southwest Little Rock, and the Pleasant View Subdivision in Northwest Little Rock. The capital and operating costs of these facilities to achieve the permitted pollution reduction is much higher, on a unit basis, than for a regional plant, as it would be designed to serve an entire city or area.

The two (2) facilities mentioned above were constructed by the developers of the respective subdivisions, and the entire operating costs of each facility is paid by the development, although homes in the developments pay a standard city sewer charge. The package plants were approved by the Utility, State, and Federal authorities, as temporary treatment plants in advance of planned regional sewer systems. The Fourche Project will eliminate the need for the Otter Creek Plant, and the Maumelle Pump Stations will eliminate the need for the Pleasant View Plant.

In addition to the high initial and operation costs, the performance of "package" wastewater treatment plants is often pobrer than desired. An additional condition imposed by State and ${ }^{2}$ ederal authorities on approval of these plants was that they be operated-by-Wastewater Utility Ireatment Division licensed operators. In spite of this, neither facility has ben able to achieve the pollution reduction limits set by their operating permits. The reasons for these failures are not clear, but appear to include the basic design of the facilities, and the amount of operator attention allowed by the budget in daily visits by an operator, whereas, the need appears to be for several hours attention each day by an operator, often assisted by a mechanic.

Alternative \#3 - New Treatment Plant
This alternative was proposed in 1976 by the Little Rock Wastewater Utility. Considerable citizen opposition was encountered and as a result the Environmental Protection Agency prepared an Environmental Impact Statement (E.I.S.) for the Little Maumelle River Valley. This E.I.S. concluded that no pollution problem existed in this area, and therefore; the Environmental Protection Agency would not allocate funds for the construction of this facility.

A new study to plan enlargement of the existing Adams Field Wastewater Treatment Plant is now underway and
includes the Little Mamelle River Valley. This study will again address the need of this area and the feasibility of a Maumelle Treatment Facility. The Adams Field Step I Facility Plan is scheduled to be completed by December, 1980.

Alternative \#4 - One Major Pump Station to Adams. Field Plant.

The 208 Areawide Plan proposes that a major pump station be constructed on the Little Maumelle River with the pump station discharging into the River Interceptor at Murry Lock and Dam. This major pump station and force main are currently not EPA grant eligible for the reason stated in Alternative \#2 and are therefore, not being pursued at this time. Also, there are some serious questions about whether the proposed force main could be constructed along the Rock Island Railroad River Line, and if the River Interceptor can accept this additional hydraulic load. These questions will be answered in the Admas Field Step I Facility Plan.

Alternative \#5
 - Increase Capacity of the Highway 10 Taylor Loop Road, and Hinson Road Pump Stations

These pump stations operate in series with the Highway 10 station discharging to Taylor Loop and Taylor Loop discharging to Hinson Road. The Hinson Road Station then pumps the entire drainage area flow (see attached map) into the Grassy Flat Interceptors at Bodney Parham and Hinson Road.

The Hinson Road Pump Station has a design capacity of 2100 gallons per minute (gpm), but the Grassy Flat Interceptor is only designed to handle 1000 gpm flow from the Maumelle Valley. This indicates the Grassy Flat Interceptors will be overloaded when the current Hinson Road Station capacity is reached; therefore, the Hinson Road Station capacity cannot be increased in sjze.

Constructing another-Grassy Flat Interceptor is also impractical due to the limited space that exists, operational problems in flow equalization in three parallel lines, and the large capital investment necessary.

8.2 PLANNING OPTIONS

The City of Little Rock can utilize its municipal land use controls to prevent overloading the sewer system. This approach is gaining currency throughout the United States and probably could be defended under law, even though it would involve significant reductions in development density below what many property awners are presently anticipating.

A fundamental assumption explicit in this approach is that development which would exceed available sewer capactty in northwest Little Rock must be precluded until sufficient capacity is provided. It would be a mistake to allow development to proceed without restraint until an intolerable heat th hazard sufficient to necessitate remedial engineering improvements has been created. Information available to us suggests that the only way to generato sufficient funds to construct the needed improvements would be to increase sewer rates substantially.

Alternative \#1 - Zoning in Conformance with the Suburban L. Development Plan

Strict adherence to the Suburban Development Plan would permit complete urbanization of the service area at low residential densities. The Plan proposes using the "R-7", "R-2", and "R-3" Single Family classifications in this area and restricting Single Family Attached and Multi-family development to three (3) high intensity urban concentrations. With sufficient capacity to accommodate approximately $\frac{1 / 2}{2}$ residential units per. gross acre, the "R-1" Single Family District (which permits minimum 15,000 square foot lots) would be an appropriate zoning designation.

One effect of this approach would be to substantially preclude any form of multi-family or attached development in northwest Little Rock for the foreseeable future, even though the Plan envisions selection of multiple uses at appropriate locations even without formal designation. 0 ffice and commercial uses pose no particular problems. They generate service demand equivalent to that of single family residential development and could be accommodated at locations designated for such purposes in the Suburban Development Plan.

A primary advantage of this alternative would be to allow all property owners some development potential on their land. In addition, the city would be assured that it would not be confronted at some later date with the need to undertake additional sewer improvements to remedy system deficiencies in this area. Under this alternative, once the service area is fully built out, major development in northwest Little Rock would cease.,

Alternative \#2 - Unrestricted Development

This option would allow higher density development at selected locations on a first come first served basis. The principal land use consequence of this approach would be to increase development densities along Highway 10 and several other arterial and collector streets traversing this area. Once remaining capacity, (as determined by the Sanitary Sewer Committee) is exhausted, development would cease. At that time, a moratorium on further development would have to be imposed until such time as needed engineering improvements have been completed.

One argument in favor of this approach is that sufficient capacity remains to permit continued development at historical. levels for several more years until the capacity limit is reached. By that time, according to this argument, the city will have been able to expand the capacity sufficient to permit further growth. An obvious weakness of this argument is that if the city is unable to complete necessary system improvements before capacity is exhausted, many property owners who have been taxed to construct the sewer system will be unable to make use of it by developing their property.

Alternative \#3 - Shifting of Development Rights (SDR)
This approach would involve dealing with each property owner on an individual basis, by assigning a total development capacity based upon the size of the land owned and districtwíde capacity as determined by an objective assessment. The difference between this option and Alternative \#l is that this concept allows density shifts within individual ownerships. At a density of 1.5 units per gross acre, for example, the owner of 50 acres would be given a right to 75 sewer hookups which might then be used to cluster all the density in a single area or spread it evenly across the 50 acres at his option.

SDR offers some advantages in improving site planning by allowing cluster development on favorably situated portions of a property while retaining undevelopable areas as open space. Significant operational problems, however, would be associated with this approach inasmuch as it would be necessary for the City to undertake a detailed survey of land ownership patterns before putting this concept into operation.

9.0 CONCLUSION

The Sanitary Sewer Committee is asking the City Board of Directors to address the sewer capacity issue in the northwest. The Committee wants the Board to adopt a policy that will limit the population capacity in the Maumelle valley to 11,000 persons. The Committee recognizes that-they cannot set land use policy regarding the mixture of land use types from an engineering desire to do so. What the system is now constructed to hande no standpoint, is that the system committee, therefore, is asking more than 11,000 persons. the City Board of guarantee that such time as supplemental or replacement wastewater facilities are constructed for the Little Maumelle drainage area.

The preceeding analysis suggests that there are no easy solutions to this problem. The practical constraints to expansion of sewer capacity in this area are very real. Even if a decision is made to construct a new sewage treatment plant at public expense and the monies are found, as much as ionál could pass before the new plant would become operational. This fact leads us to the conclusion that the public interesidential be best served by imposing a low densice area. Appropriate commer classification throughout cial and office sites courd sort, which would involve both a to doing something of public health and an increased tax burden on potential threat

APPENDIX A
 LITTLE ROCK SANITARY SEWER COMMITTEE
 POLICY STATEMENT

SERVICE LIMITATIONS IN THE LITTLE MAUMELLE RIVER VALLEY

A part of the extreme northwest part of the city of Little Rock, Arkansas lays in the valley of the Little Maumelle River. No community wastewater treatment facilities exist in this valley, although an attempt to provide such was made in 1976. At that time, the Committee made public plans to construct a regional wastewater treatment plant near the mouth of the Little Maumelle Valley. The United States Lnvironmental Protection Agency conducted an Environmental Impact Statement on the proposed plant, and determined that the existing polluticn problems did not justify a grant, therefore the plant was not blilt as proposed.

The existing public sewers in the valley are intercepted by pumping stations, and the wastewater pumped over the ridge into the sewage collection system in the Fourche Creek Valley. This Fourche Creek system flows to the A lams Field Wastewater Treatment Plant.

The existing pumping stations and force mains were constructed by the Committee in 1979 at a cost of approximately $\$ 600,000.00$ in Wastewater Utility Funds when it became evident that the construction of the proposed plant would be delayed. These pumping stations are considered interim facilities, to provide service until larger, more permanent pumping and/or treatment facilities for the valley can be provided. The planning for the larger, more permanent facilities has been underway since 1974, and some recommendations may be available by the end of 1980.

It should be recognized by the citizens of Little Rock City officials and other interested parties, that the size, scope, cost, timing and even feasibility of additional facilities in this Basin are unknown at this time and impossible to predict. Wastewater Utility Financing projections through 1985 do not contain any funds for Maumelle Valley, and without financing there will be no such facilities even if a project desired by the community and acceptable to area residents and pollution control authorities is identified.

The Wastewater Utility capital projects are financed exclusively from user charges and United States Environmental Protection Agency grants, and those resources are allocated to the maximum availability to the planned Fourche Creek Plant and Lines project, and the planned enlargement and modernization of the existing Adams Field Plant. Current estimates of the costs of these two projects, to be completed by 1985, are in excess of Forty Million Dollars. The Committee remain committed to providing permanent facilities in this area, as a priorit following the Fourche and Adams Field projects, subject to availabilit of funds.

It should also be recognized by the citizons of Littlc Rock, City officials, and other interested parties, that the existing pumping facilities in the Little Maumelle River Valley have a limited capacity, which cannot be expanded due to equally limited capacity in the receiving sewers in the Fourche Creek Valley collection system. The capacity of these pumping facilities has been estimated at between 6,600 persons and 11,000 persons, by various independent analyses by the committee's several consultants who have been involved in the design of the Facilities.

For these reasons, the Committee declares its policy to exercise what controls are necessary and proper and in the general public interest, to ensure that the capacity of the existing pumping stations is not exceeded before the properties they were constructed to serve have had the opportunity to connect to the sewer. The controls to be exercised are as follows:

1. No approval for sewer service will be given for properties outside the planned "gravity service" areas of these facilities. The boundaries of these service areas are depicted on the map attached to this policy statement.
2. The Committee hereby urges the Little Rock Planning Commission and the Little Rock Board of Directors to consider the population limits of these pumping facilities in their zoning recommendations and decisions, with the goal of not exceeding 11,000 persons, or population equivalent in the service area of these facilities. The Committee recognizes the need for a land-use mixture, and does not insist on a uniform population density throughuut the service area, provided that the total population does not exceed the maximum 11,000 person goal.
3. These controls will be effective until such time as a definite plan for additional or replacement facilities for Sewer Service in the Little Maumelle River Valley has been formulated, is acceptable to the citizens of the city and the appropriate State and Federal Pollution Control authorities, and a time schedule and financing plan exists to have the additional or replacement facilities in service before the existing facilities are overloaded.

Passed and Approved February 19, 1980

Garver \& Garver Incorporaled
Engineers and Planners
Eleventh and Billery Streels
Little Rock. Arkansas 72202
501-376-3633

February 13, 1980

Little Rock Wastewater Utility
221 East Capitol
Little Rock, Arkansas 72202
Attention: Mr. Rick Barger, Engineer
Re: Maumelle Pump Stations
Service Area

Gentlemen:
As per your request, we submit this letter report stating our opinion of the service capabilities of the pump stations located in the Maumelle Drainage Basin and the gravity sewage collection system in the Grassy Flat Creek Basin to which these pump stations discharge.

The Maumelle service area is served by three pump stations. These pump stations and their service areas are identif:ed on the exhibit attached to this report and are described as follows:

1) Highway 10 Pump Station - Firm Capacity $=840 \mathrm{gpm}$ @ $75^{\prime} \mathrm{TDH}$

- Gravity Service Area $=744$ acres
- Discharges to Taylor Loop Pump Station

2) Taylor Loop Pump Station
3) Hinson Road Pump Station
_ Firm Capacity $=1500$ gpm @ 128' THD

- Gravity Service Area $=1278$ acres
- Discharges to Hinson Road Pump Station
- Firm Capacity $=2100$ gpm @ $118^{\circ} \mathrm{TDH}$
- Gravity Service Area $=394$ acres
- Discharges to Grassy Flat Interceptor

The design criteria which was used to size these stations is as follows:

1) Net Area * Gross drainage area minus those areas that are:
a) too steep,
b) in creek flood plains,
c) above the hydraulic gradient of the city water service, and
d) golf course

Little Rock Wastewater Utility
February 13, 1980
Page Two
2) Development at 2.5 dwelling unfts per net acre
3) Full Development $=75 \%$ bulldout
4) Peak Flow $=1000$ gallons per day/dwelling unit

The net area was determined to be about 77% of the gross area, This would appear to be a reasonable estimate. The only possible defficiency we see in the service areas is that the service area of the Highway 10 Pump Station was limited to the area south of Highway 10 . There are about 408 acres tributary to this station north of Highway 10.

The number of dwelling units per acre used for design seems somewhat light. If we were designing this system, we would probably propose to you that we use an "ultimate" development density of 13 people per gross acre, staged as would seem prudent considering development tendencies in the area. Assuming a per dwelling population of 3.1 persons, the design criteria used computes to a density of 7.75 people per net acre or about 6 people per gross acre.

Sizing of sewage collection facilities is based on maximum instantaneous flowrates. Maximum instantaneous flowrates are related to the water useage characteristics of the population served and the total number of people served. In Little Rock, we use an average sewage flow of 120 gallons per person per day which water consumption records indicate is a fairly safe design number. We also use an empirical formula presented in the Dayds Handbook of Hydraulic Engineering which relates the peak flowrate to the average daily flowrate and also accounts for the observed fact that the greater the population served, the more diverse their activities, and the smaller the ratio of peak to average flow. This formula is

$$
\text { Where } \begin{aligned}
& M=5 / \mathrm{p}^{0.2} \\
& M=\text { multiplier of average flowrate } \\
& p=\text { population in } 1000 \text { 's of people }
\end{aligned}
$$

Since no sewer lines are installed to be "bottle-tight", we customarily add a flat rate of 50 gpcd as an infiltration allowance. Using these figures and a population of 3.1 people per dwelling, the maximum instantaneous flowrate compules to be approximately $2,015 \mathrm{gpd}$ per dwelling unit for population areas of less than 1000 people and 1329 gpd per dwelling unit for a service population of 10,000 . The maximum flowrates used in sizing these pump stations was 1000 gallons per day per dwelling unit.

The force main from the Hinson Road Pump Station discharges to the Grassy Flat Interceptor sewer just south of Rodney Parham Road. These are 588 acres tributary to the Grassy Flat Interceptor above this point as shown on the attached exhibit. The Grassy Flat Interceptor was designed to serve an ultimate population of 13 people per gross acre. The reason for selection

Little Rock Wastewater Utility
February 13, 1980
Page Three
of an "ultimate development" criteria for this line was that this line paralleled an existing sewer in an area developed to the point that space to locate a third line would be almost nonexistent. A third parallel sewer would also have caused considerable maintenance problems associated with flow equalizatimon in three lines and of course would be quite expensive in limited installation space.

During the design of titis Grassy Flat Interceptor, the Utility opted to increase the size of the line to permit discharge of approximately 1000 gpm from the Maumelle basin. Attached is a copy of a letter from our office to the Utility concerning this matter which shows the line size at critical points and the "excess" capacity provided above Grassy Flat Creek design population flowrates. The Hinson Road Pump Station has a capacity of 2100 gpm.

In conclusion, using the design criteria outlined above we would compute the capacity of the existing Maumelle Basin pump stations to be as follows:

1) Highway 10 Pump Station Capable of serving 2140 people
2) Taylor Loop Pump Station - Capable of serving a total of 4330 people located in its gravity service area and the service area of the Highway 10 Pump Station.
3) HAnson Road Pump Station

- Capable of serving 6600 people in the entire service area.

We should reiterate that the Grassy Flat Interceptor cannot handle 2100 gpm additional flow at its design buildout of its gravity service area. There most surely is sufficient capacity at this time. How long that will exist is really beyond the scope of this report to determine.

We appreciate the opportunity to be of service to the Utility in this matter. We are available to discuss this report with you at your convenience.

RP/SMW:ge
(12380)

POLICY STATEMENT

SERVICE LIMITA'IONS IN 'Thl LITNLE MAUMLLLE RIVER VALLLY

A part of the extreme northwest part of the city of Little Rock, Arkansas lays in the valley of the Little Maumelle River. No community wastewater treatment facilities exist in this valley, aithough an attempt to provide such was made in 1976. At that time, the Committee made public plans to construct a regional wastewater treatment plant near the mouth of the Little Maumelle Valley. The United States knvironmental Protection Agency conducted an Environmental Impact Statement on the proposed plant, and determined that the existing pollution problems did not justify a grant, therefore the plant was not built as proposed.

The existing public sewers in the valley are intercepted by pumping stations, and the wastewater pumped over the ridge into the sewage collection system in the Fourche Creek Valley. This Fourche Creek system flows to the Adams Field Wastewater Treatment Plant.

The existing pumping stations and force mains were constructed by the Committee in 1979 at a cost of approximately $\$ 600,000.00$ in Wastewater Utility Funds when it became evident that the construction of the proposed plant would be delayed. These pumping stations are considered interim facilities, to provide service until larger, more permanent pumping and/or treatment facilities for the valley can be provided. The planning for the larger, more permanent facilities has been underway since 1974, and some recommendations may be available by the end of 1980 .

It should be recognized by the citizens of Little Rock City officials and other interested parties, that tie size, scope, cost, timing and even feasibility of additional facilities in this Basin are unknown at this time and impossible to predict. Wastewater Utility Financing projections through 1985 do not contain any funds for Maumelle Valley and without financing there will be no such facilities even if a project desired by the community and acceptable to area residents and pollution control authorities is identified.

The Wastewater Utility capital projects are financed exclusively from user charges and United States Environmental Protection Agency grants, and those resources are allocated to the maximum availability to the planned Fourche Creek Plant and Lines project, and the planned enlargement and modernization of the existing Adams Field Plant.
Current estimates of the costs of these two projects, to be completed by 1985, are in excess of Forty Million Dollars. The Committee remair committed to providing permanent facilities in this area, as a priorit following the Fourche and Adams Field projects, subject to availabilit of funds.

It should also be rocognized by the citizons of Little Rock, City officials, and other interested parties, that the existing
pumping facilities in the Little Maumelle River Valley have a limited capacity, which cannot be cxpanded due to equally limited capacity in the receiving sewers in the Fourche Creek Valley collection system. The capacity of these pumping facilities has been estimated at between 6,600 persons and 11,000 persons, by various independent analyses by the committee's several consultants who have been involved in the design of the Facilities.

For these reasons, the Committee declares its policy to exercise what controls are necessary and proper and in the general public interest, to ensure that the capacity of the existing pumping stations is not exceeded before the properties they were constructe to serve have had the opportunity to connect to the sewer. The controls to be exercised are as follows:

1. No approval for sewer service will be given for properties outside the planned "gravity service" areas of these facilities The boundaries of these service areas are depicted on the map attached to this policy statement.
2. The Committee hereby urges the Little Rock Planning Commission and the Little Rock Board of Directors to consider the population limits of these pumping facilities in their zoning recommendations and decisions, with the goal of not exceeding 11,000 persons, or population equivalent in the service area of these facilities. The Committee recognizes the need for a land-use mixture, and does not insist on a uniform population density throughout the service area, provided that the total population does not exceed the maximum 11,000 person goal.
3. These controls will be effective until such time as a definite plan for additional or replacement facilities for Sewer Service in the Little Maumelle River Valley has been formulated, is acceptable to the citizens of the city and the appropriate State and Federal Pollution Control authorities, and a time schedule and financing plan exists to have the additional or replacement facilities in service before the existing facilities are overloaded.

Passed and Approved February 19; 1980

APPENDIX A2 LITTLE MAUMELLE BASIN STUDY

LITTLE MAUMELLE BASIN STUDY

Background and Data Sources

This report has been prepared for the Little Rock Wastewater Utility. The purpose of the report is to assist with the Utility's efforts to determine the demand for sewer service in the Little Maumelle basin. The basin is some 51,475 acres of which approximately 15 percent is within the Little Rock city limits. Approximately 9,210 acres of the basin are currently part of the Wastewater Utility service area.
In order to estimate future development within the basin, the City acquired existing parcel information from the Pulaski County Assessor. This information (in AutoCAD map units) was translated into state plane coordinates and fitted into the City GIS. City GIS data was used; more particularly - land use plan, zoning, roads, topography, and floodway/floodplain information. (Note: The Wastewater Utility provided the basin and sub-basin coverage for use in the study.)
Metroplan is the regional planning agency and was contacted for information and advice. Metroplan provided land use information from SPOT data; topography (steep slope), land use and floodplain information based on USGS data; and, projections of population and employment by sub-basin for the year 2025. This data provides the basis for the twenty-five year estimate.
Building permit data for the City and census tracts 42.05 \& 42.06 (Chenal Parkway to the Maumelle River and Ferndale Cut-off Road to Hinson/Napa Valley Road) -- both number and value for the 1990s -- were used to trend future development in the area.

Methodology

Each sub-basin was reviewed independently. The total developable area was determined first by calculating the area of each sub-basin using GIS. Next the floodway/floodplain and steep slopes were determined, along with wetlands information provided by Metroplan. Finally, the amount of Park/Open Space was calculated from the City Land Use Plan. Based on all of this information, the amount of developable area was calculated.
The next step was to determine the amount of area already developed. This was done using Metroplan's numbers for existing land use and the County Assessor's parcel data. To determine the areas already developed, only those parcels less than 8 (eight) acres were used. It is assumed that this gives a good indication of the existing large tract (3 to 5 acre) subdivisions, which have become common in rural Pulaski and Saline counties. This development pattern is not likely to change to a denser pattern once developed.
Each sub-basin was then examined for likely density for the remaining area, that is 'urban density' (3 to 5 units per acre) or 'suburban/rural density' (3 to 5 acres per unit). (The current density of subdivisions in west Little Rock is from 3 to 4 units per acre.) This determination was made based on the existing development pattern; likelihood that the pattern would continue; and topography (developability) of the remaining area within the sub-basin.
The final step was to determine the amount of nonresidential development likely to occur on the remaining developable area. For those sub-basins within the City Land Use Plan area, that document was used to determine the amount of residential and nonresidential land to be developed. For those sub-basins beyond the City Land Use Plan, the existing development pattern and the existing road network were used to estimate the amount of future nonresidential development.
This work provided the projections for a fully developed basin. It should be noted that the projection assumes development trends will continue and sewer service can be made available to additional areas.

For the 2025 or twenty-five year projection, Metroplan population estimates are used with a 2.3 person per household assumption for 2025. The 1990 census indicates a 2.6 and 2.9 person-perhousehold for this area and 2.42 for the City of Little Rock. This provides the household numbers found in table 2 .
Using the development pattern over the last 10 years for the City and west Little Rock, a crosscheck was developed of 250 single-family units per year and 600 multifamily units per decade. A review of permit activity over the last ten years shows only one year had less than 250 single family units permitted in census tracts 42.05 and 42.06 combined (NW Little Rock, north of Kanis and west of Bowman/Rodney Parham Roads). The average annual number of permitted single family homes was 292 for these two tracts. Over 850 multifamily units were added over the ten-year period. Based on these numbers, two trend lines (for the entire area within census tracts $42.05 \& 42.06$) were developed: 250 single family units per year and 600 multifamily units per decade; and 290 single family units per year and 800 multifamily units per decade. In table 2, these are referred to as 'Trend' and 'High Trend'.
For those sub-basins within Census Tracts 42.05 and 42.06 and likely to be in the City limits, the Metroplan projections by sub-basin were reviewed against building permit data. The number of permits outside the Little Maumelle basin but within census tracts 42.05 and 42.06 was determined. The City estimate for census tracts 42.05 and 42.06 (west Little Rock) was reduced for those areas outside the basin but within the tracts. This was done for the period from 1990 to now as well as for the 1990 to 2025 time period. The result was the trend line estimated another 2,700 to 2,800 households over the Metroplan estimate. (See table 2)
A review of building permit data for the last ten years was completed for three sub-basins 60100,60200 and 60301 . Within these three basins approximately 1968 new units have been permitted since 1990. The estimates provided by Metroplan for the time period from 1990 to 2025 call for approximately 3,500 new units. The permit data indicates that, of the expected 3500 units over 56 percent were built in the first ten years (of a 35 -year period). Using the Metroplan projections the sub-basins in question would be less than 50 percent developed in 2025. By distributing the majority of the trend projection 'overage' to sub-basins 60200,60301 and 60302 the percent developed would range from 60 to 80 percent. Both the Metroplan and the trend estimates are provided for use. (See table 2)
Metroplan provided employment projections for 2025. The projections of employment were done at a metropolitan level. This number is then distributed to smaller geographic areas within the metropolitan area. Using existing zoning, land use plans and development trends, Metroplan staff assumes a certain percentage of the metropolitan employment will be captured in a sub-area. Projections of total development are based on acreage estimates for nonresidential use, other than open space (recreational). These projections are based on existing land use, zoning and plans where available. They are also based on the likelihood of additional non-residential use due to existing use and the road system. (See table 3)
In order to estimate occupancy/employment levels, the non-residential use area was divided into commercial and office/institutional use groups by sub-basin. The existing land use plan and zoning pattern were used to help calculate the ratio. To determine the amount of building per acre of land, a review of applications to the City was conducted. This review of site plan and planned development applications gave an average building area to site area. The resulting square footage numbers were given to the City of Little Rock's Plans Examination Administrator to generate demand. Numbers from a model building code were used to calculate the number of persons for plumbing loads. These loads were used to determine sewer needs in buildings.
TABLE 2
PROJECTION OF HOUSEHOLDS
FOR THE LITTLE MAUMELLE BASIN

	1090es	Retumemiremits	Houmos chare				
60010	${ }^{65}$		23	${ }^{37}$	40	40	260
60100	1250	${ }_{668}$	900	1113	1115	1115	2400
60200	2500		${ }^{1565}$	1839	2500	3000	
5301	240	607	1210	549	2000	2600	4120
5302	${ }^{190}$		600	${ }_{886}$	1300	1880	3200
60400	${ }^{160}$		400	${ }_{648}$	200	${ }^{7} 0$	${ }_{1370}$
66500	170		230	491	490	${ }_{40}$	1080
66000	205		290	${ }_{593}$	${ }_{595}$	${ }_{595}$	1610
60770	${ }^{80}$		45	${ }_{151}$	${ }_{150}$	${ }^{150}$	1605
60800	${ }^{140}$		100	${ }^{338}$		${ }^{360}$	12800
6090	70		70	${ }_{140}$		140	11650

*Note: Metroplan projection is based on a 2.8 or 2.6 person per household based on the 1990 census and 2.3 person per household assumed by City for 2025 . Metroplan provided total population numbers not households.
Metroplan projection 1990 to 2025, 6775 households (based on 2.3 household size).
Trend 'projection' assumes 250 single-family units per year and 600 multifamily units per decade. (10850 households for census tracts $42.05 \&$ 42.06 area, 3100 units are assumed for areas outside of basin).
High Trend 'projection' assumes 290 single-family units per year and 800 multifamily units per decade. (12950 households for census tracts 42.05 \& 42.06 area, 3600 units are assumed for areas outside of basin)

TABLE 1 SUB-BASIN PROJECTED RESDENTIAL DEVELOPMENT PATTERN (IN ACRES)						
					Total Development	
Sub-basin	Total Area	Not developable	Existing Large lot	Non-residential	Large Lot Urban	
60900	8325	416	277	1250	1029	5430
60800	7401	370	1000	740	1961	4070
60700	6014	902	456	300	4812	
60600	6042	604	1364	604	4834	
60500	3632	218	734	182	3232	
60400	4411	220	975	90	4101	
60302	6437	2124	1030	966	2575	772
60301	2235	335	NA	335	220	1345
60200	3926	393	NA	393	196	2944
60100	1312	79	NA	262	197	774
60010	1738	956	245	10	257	

Residential is single and multifamily; non-residential is commercial, office, etc.; Not developable is steep slope, floodway, open space and park

Table 3 Projection of Non-residential Demand							
	1990	2025	Development (acreage)			Number of persons for plumbing	
Sub-basin	(jobs)	(jobs added)	Total	Commercial	Off/Inst.	Commercial	Offlnst.
60010	9	33	10	10	0	320	0
60100	523	1148	262	157	105	5050	8110
60200	320	1829	393	157	236	5050	18220
60301	17	1404	335	218	117	7010	9040
60302	68	431	966	386	580	12420	44790
60400	22	722	90	30	60	960	4630
60500	30	142	182	73	109	2350	41220
60600	26	135	604	423	181	13610	13980
60700	5	10	300	180	120	5790	9270
60800	8	56	1000	600	400	19300	30890
60900	5	3	1450	870	580	27990	44790

2025 Jobs added is provided by Metroplan based on Metropolitan projections distributed throughout the four county area
(Based on the land use assumptions sub-basins 60400 is over estimated for 2025. The major of the jobs added should go to sub-basin 60302 and adjacent areas outside of the basin. Sub-basin 60500 may also be high; however the jobs would likely be in adjacent sub-basins likely 60600 .)
The Planning \& Development Department does not take responsibility for the employment and persons for plumbing numbers which are provided. Off/nst. - Office/Institutional use

APPENDIX A3
 SUPPLEMENTAL WASTEWATER DATA

APPENDIX A4 WET WEATHER FLOW PROJECTIONS

Maumelle Flows MGD - Current \& Projected Average hourly flows

	17:00	1.93	3.62	5.62
	18:00	2.00	3.75	5.82
	19:00	2.23	4.16	6.46
	20:00	2.41	4.52	7.01
	21:00	2.13	3.98	6.18
	22:00	1.74	3.25	5.04
	23:00	1.24	2.33	3.61
Tues	0:00	1.01	2.05	3.18
	1:00	0.90	1.83	2.83
	2:00	0.91	1.84	2.86
	3:00	0.86	1.74	2.70
	4:00	0.91	1.85	2.87
	5:00	1.36	2.76	4.29
	6:00	3.12	6.34	9.84
	7:00	2.81	5.71	8.86
	8:00	2.02	4.10	6.37
	9:00	1.99	4.05	6.29
	10:00	1.46	2.96	4.59
	11:00	1.47	2.99	4.64
	12:00	1.52	3.09	4.79
	13:00	1.43	2.90	4.51
	14:00	1.34	2.72	4.22
	15:00	1.26	2.57	3.98
	16:00	1.54	3.13	4.86
	17:00	1.77	3.59	5.57
	18:00	1.94	3.95	6.12
	19:00	2.06	4.18	6.49
	20:00	2.38	4.85	7.52
	21:00	2.49	5.06	7.85
	22:00	1.80	3.65	5.67
	23:00	1.23	2.50	3.89
Wed	0:00	1.01	2.10	3.27
	1:00	0.97	2.01	3.12
	2:00	0.88	1.83	2.84
	3:00	0.80	1.65	2.56
	4:00	0.90	1.86	2.88
	5:00	1.36	2.81	4.36
	6:00	2.79	5.79	8.99
	7:00	2.56	5.30	8.23
	8:00	2.25	4.66	7.24
	9:00	1.84	3.81	5.92
	10:00	1.61	3.33	5.17
	11:00	1.54	3.19	4.94
	12:00	1.47	3.04	4.73
	13:00	1.49	3.08	4.78
	14:00	1.34	2.78	4.31
	15:00	1.32	2.75	4.26
	16:00	1.48	3.06	4.76
	17:00	1.75	3.64	5.65

	18:00	1.84	3.82	5.93
	19:00	2.04	4.22	6.55
	20:00	2.24	4.65	7.22
	21:00	2.30	4.77	7.41
	22:00	1.77	3.67	5.70
	23:00	1.23	2.56	3.97
Thur	0:00	0.88	1.91	2.97
	1:00	0.78	1.69	2.63
	2:00	0.80	1.74	2.70
	3:00	0.80	1.75	2.71
	4:00	0.81	1.77	2.75
	5:00	1.40	3.06	4.74
	6:00	2.80	6.09	9.46
	7:00	2.45	5.34	8.29
	8:00	1.93	4.21	6.54
	9:00	1.77	3.85	5.98
	10:00	1.48	3.22	4.99
	11:00	1.46	3.17	4.92
	12:00	1.39	3.02	4.69
	13:00	1.43	3.11	4.83
	14:00	1.27	2.76	4.29
	15:00	1.34	2.92	4.53
	16:00	1.47	3.21	4.98
	17:00	1.76	3.84	5.96
	18:00	1.87	4.08	6.33
	19:00	1.87	4.07	6.31
	20:00	1.97	4.28	6.65
	21:00	2.16	4.71	7.31
	22:00	1.76	3.84	5.96
	23:00	1.27	2.77	4.30
Fri	0:00	1.03	2.21	3.43
	1:00	0.93	1.98	3.08
	2:00	0.81	1.73	2.69
	3:00	0.75	1.61	2.50
	4:00	0.79	1.70	2.64
	5:00	1.19	2.55	3.96
	6:00	2.31	4.95	7.69
	7:00	2.40	5.14	7.99
	8:00	2.25	4.82	7.48
	9:00	2.27	4.86	7.54
	10:00	2.00	4.29	6.66
	11:00	1.67	3.57	5.54
	12:00	1.68	3.60	5.59
	13:00	1.59	3.40	5.28
	14:00	1.56	3.33	5.17
	15:00	1.51	3.23	5.01
	16:00	1.67	3.58	5.55
	17:00	1.92	4.11	6.38
	18:00	1.76	3.76	5.84

	19:00	1.79	3.84	5.95
	20:00	1.85	3.95	6.13
	21:00	1.61	3.46	5.36
	22:00	1.22	2.61	4.06
	23:00	0.99	2.11	3.28
Sat	0:00	0.98	1.92	2.98
	1:00	0.83	1.63	2.53
	2:00	0.76	1.49	2.31
	3:00	0.77	1.50	2.33
	4:00	0.88	1.73	2.68
	5:00	1.21	2.37	3.67
	6:00	1.80	3.53	5.48
	7:00	2.60	5.10	7.92
	8:00	2.50	4.91	7.62
	9:00	2.43	4.77	7.40
	10:00	2.20	4.32	6.71
	11:00	2.09	4.11	6.37
	12:00	2.01	3.94	6.12
	13:00	2.01	3.95	6.12
	14:00	1.94	3.81	5.91
	15:00	1.86	3.65	5.66
	16:00	2.02	3.95	6.14
	17:00	1.96	3.84	5.97
	18:00	2.08	4.07	6.32
	19:00	2.06	4.04	6.28
	20:00	1.95	3.82	5.92
	21:00	1.72	3.37	5.23
	22:00	1.34	2.62	4.06
	23:00	1.00	1.96	3.04

Year 2000 Analysis of Twelve-hour One-Inch Rain Event
 Calibrated in Against One-Inch Event Observed

Ison RDII Response Curves for 12 Hour Event

> Volume of Infiltration $=0.592 \times$ Total I / I Volume
> Volume of Inflow $=0.408 \times$ Total I/I Volume
> Peak Infilitration $=(\text { Volume of Infiltration } \times 2 / 9.76)^{\wedge} 0.5$
> Peak Inflow $=(\text { Volume of Inflow } \times 2 / 2.40)^{\wedge} 0.5$
> Duration of infiltration in minutes $=9.76 \times$ Peak Infiltration Flowrate in gpm
> Duration of inflow minutes based upon shape of inflow triangle

Total Volume RDII $=$	1.22	MG
Volume of Infil $=$	0.72	MG
Volume of Inflow $=$	0.50	MG
Peak Infilitration =	385	gpm
Peak Inflow $=$	644	gpm
Duration infil $=$	3755	minutes
Duration inflow $=$	1546	minutes
Inflow Decline $=$	1005 minutes	
S Inflow Decline $=$	0.64 gpm/minute	
S Infil Decline $=$	0.10 gpm/minute	
Inflow /Infil transition	2053 minutes	
S to Peak	1.43 gpm/minute	

Hinson RDII Response Curves for 12 Hour Event

> Volume of Infiltration $=0.701 \times$ Total $I / /$ Volume
> Volume of Inflow $=0.299 \times$ Total I/IVolume
> Peak Infilitration $=(\text { Volume of Infiltration } \times 2 / 3.00)^{\wedge} 0.5$
> Peak Inflow $=(\text { Volume of Inflow } \times 2 / .647)^{\wedge} 0.5$
> Duration of infiltration in minutes $=3.00 \times$ Peak Infiltration Flowrate in gpm
> Duration of inflow minutes based upon shape of inflow triangle

Total Volume RDII $=$	3.35	MG
Volume of Infil $=$	2.35	MG
Volume of Inflow $=$	1.00	MG
Peak Infilitration $=$	1251	gpm
Peak Inflow $=$	1760	gpm
Duration infil $=$	3754	minutes

Duration inflow $=$	1138	minutes
Inflow Decline $\mathrm{t}=$	854	minutes
S Inflow Decline $=$	2.06	$\mathrm{gpm} /$ minute
S Infil Decline $=$	0.33	$\mathrm{gpm} /$ minute
Inflow /Infil transition	1878	minutes
S to Peak =	4.18	$\mathrm{gpm} /$ minute

North Slope RDII Response
Designed to Mirror Hinson \& Ison Response Shapes

| Projected Peak RDII | Flow $=$ | 120 gpm |
| :--- | :--- | ---: | :--- |
| S to Peak | Slope $=$ | $0.17 \mathrm{gpm} /$ minute |
| Inflow Decline | Flow $=$ | $0.08 \mathrm{gpm} /$ minute |
| S Inflil Decline | Slope $=$ | $0.010 \mathrm{gpm} /$ minute |

Year 2000 Analysis of Twelve-hour 5-Year Frequency Rain Event

Ison RDII Response Curves for 12 Hour Event

Volume of Infiltration $=0.592 \times$ Total I/I Volume
Volume of Inflow $=0.408 \times$ Total I/I Volume
Peak Infilitration $=(\text { Volume of Infiltration } \times 2 / 9.76)^{\wedge} 0.5$
Peak Inflow $=(\text { Volume of Inflow } \times 2 / 2.40)^{\wedge} 0.5$
Duration of infiltration in minutes $=9.76 \times$ Peak Infiltration Flowrate in gpm
Duration of inflow minutes based upon shape of inflow triangle

Total Volume RDII $=$	5.74	MG
Volume of Infil $=$	3.40	MG
Volume of Inflow $=$	2.34	MG
Peak Infilitration =	834	gpm
Peak Inflow $=$	1397	gpm
Duration infil $=$	8144	minutes
Duration inflow $=$	1847	minutes
Inflow Decline $=$	1127	minutes
S Inflow Decline $=$	1.24	$\mathrm{gpm} /$ minute
S Infil Decline $=$	0.10	$\mathrm{gpm} /$ minute
Inflow /Infil transition	2116	minutes

```
S to Peak
\(3.10 \mathrm{gpm} /\) minute
```


Hinson RDII Response Curves for 12 Hour Event

> Volume of Infiltration $=0.701 \times$ Total I/I Volume
> Volume of Inflow $=0.299 \times$ Total I/I Volume
> Peak Infilitration $=(\text { Volume of Infiltration } \times 2 / 3.00)^{\wedge} 0.5$
> Peak Inflow $=(\text { Volume of Inflow } \times 2 / .647)^{\wedge} 0.5$
> Duration of infiltration in minutes $=3.00 \times$ Peak Infiltration Flowrate in gpm Duration of inflow minutes based upon shape of inflow triangle

Total Volume RDII $=$	15.06	MG
Volume of Infil $=$	10.56	MG
Volume of Inflow $=$	4.50	MG
Peak Infilitration =	2653	gpm
Peak Inflow $=$	3731	gpm
Duration infil =	7959	minutes
Duration inflow $=$	1822	minutes
Inflow Decline $\mathbf{t}=$	1102	minutes
S Inflow Decline $=$	3.38	gpm/minute
S Infil Decline $=$	0.33	gpm/minute
Inflow /Infil transition	2122	minutes
S to Peak $=$	8.87	gpm/minute

North Slope RDII Response
Designed to Mirror Hinson \& Ison Response Shapes

Projected Peak RDII	Flow $=$	396	gpm
S to Peak	Slope $=$	0.55	$\mathrm{gpm} /$ minute
Inflow Decline	Flow $=$	0.28	$\mathrm{gpm} /$ minute
S Infil Decline	Slope $=$	0.010	$\mathrm{gpm} /$ minute

	Timer	Project RDII Flows in gpm			Total RDIIin MGD
	in Minutes	Ison	Hinson	North Slope	
	0	0	0	0	0
	60	86	251	10	0.50
	120	172	502	20	1.00
	180	257	752	30	1.50
	240	343	1003	40	2.00
	300	429	1254	50	2.50
	360	515	1505	60	3.00
	420	601	1756	70	3.50
	480	686	2006	80	4.00
	540	772	2257	90	4.50
	600	858	2508	100	5.00
	660	944	2759	110	5.50
Peak	720	1030	3010	120	6.00
	780	992	2886	115	5.76
	840	953	2763	110	5.52
	900	915	2639	106	5.28
	960	876	2516	101	5.03
	1020	838	2392	96	4.79
	1080	800	2268	91	4.55
	1140	761	2145	86	4.31
	1200	723	2021	82	4.07
	1260	684	1898	77	3.83
	1320	646	1774	72	3.59
	1380	608	1650	67	3.35
	1440	569	1527	62	3.11
	1500	531	1403	58	2.87
	1560	492	1280	53	2.63
	1620	454	1156	48	2.39
	1680	416	1032	43	2.15
	1740	377	909	38	1.91
	1800	339	785	34	1.67
	1860	300	662	29 Inflow to	1.43
	1920	262	605	24 Infiltration	1.28
	1980	224	585	20 Transition	1.19
	2040	185	566	19 Period	1.11
	2100	166	546	18	1.05
	2160	160	526	18	1.01
	2220	154	506	17	0.98
	2280	148	486	16	0.94
	2340	142	467	16	0.90
	2400	136	447	15	0.86
	2460	130	427	14	0.82
	2520	124	407	14	0.78

2580	118	387	13	0.75
2640	112	368	12	0.71
2700	106	348	12	0.67
2760	100	328	11	0.63
2820	94	308	10	0.59
2880	88	288	10	0.56
2940	82	269	9	0.52
3000	76	249	8	0.48
3060	70	229	8	0.44
3120	64	209	7	0.40
3180	58	189	6	0.37
3240	52	170	6	0.33
3300	46	150	5	0.29
3360	40	130	4	0.25
3420	34	110	4	0.21
3480	28	90	3	0.17
3540	22	71	2	0.14
3600	16	51	2	0.10
3660	10	31	1	0.06
3720	4	11	0	0.02
3755	0	0	0	0.00

| Timer
 in Minutes | Project RDII Flows in gpm
 Ison
 Hinson
 North Slope | | Total RDII
 in MGD | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 0 | 0 | 0 |
| 60 | 186 | 532 | 33 | 1.08 |
| 120 | 372 | 1064 | 66 | 2.17 |
| 180 | 558 | 1597 | 99 | 3.25 |
| 240 | 744 | 2129 | 132 | 4.33 |
| 300 | 930 | 2661 | 165 | 5.41 |
| 360 | 1116 | 3193 | 198 | 6.50 |
| 420 | 1302 | 3725 | 231 | 7.58 |
| 480 | 1488 | 4258 | 264 | 8.66 |
| 540 | 1674 | 4790 | 297 | 9.75 |
| 600 | 1860 | 5322 | 330 | 10.83 |
| 660 | 2046 | 5854 | 363 | 11.91 |
| 720 | 2231 | 6384 | 396 | 12.99 |
| 780 | 2157 | 6181 | 379 | 12.57 |
| 840 | 2082 | 5978 | 362 | 12.14 |
| 900 | 2008 | 5776 | 346 | 11.72 |
| 960 | 1933 | 5573 | 329 | 11.29 |
| 1020 | 1859 | 5370 | 312 | 10.87 |
| 1080 | 1785 | 5167 | 295 | 10.45 |
| 1140 | 1710 | 4964 | 278 | 10.02 |
| 1200 | 1636 | 4762 | 262 | 9.60 |

1260	1561	4559	245	9.18
1320	1487	4356	228	8.75
1380	1413	4153	211	8.33
1440	1338	3950	194	7.90
1500	1264	3748	178	7.48
1560	1189	3545	161	7.06
1620	1115	3342	144	6.63
1680	1041	3139	127	6.21
1740	966	2936	110	5.78
1800	892	2734	94	5.36
1860	817	2531	77	4.94
1920	743	2328	60	4.51
1980	669	2125	43	4.09
2040	610	1953	40 Inflow to	3.75
2100	604	1933	39 Infiltration	3.71
2160	598	1914	38 Transition	3.68
2220	592	1894	38 Period	3.64
2280	586	1874	37	3.60
2340	580	1854	37	3.56
2400	574	1834	36	3.52
2460	568	1815	35	3.49
2520	562	1795	35	3.45
2580	556	1775	34	3.41
2640	550	1755	34	3.37
2700	544	1735	33	3.33
2760	538	1716	32	3.30
2820	532	1696	32	3.26
2880	526	1676	31	3.22
2940	520	1656	31	3.18
3000	514	1636	30	3.14
3060	508	1617	29	3.11
3120	502	1597	29	3.07
3180	496	1577	28	3.03
3240	490	1557	28	2.99
3300	484	1537	27	2.95
3360	478	1518	26	2.92
3420	472	1498	26	2.88
3480	466	1478	25	2.84
3540	460	1458	25	2.80
3600	454	1438	24	2.76
3660	448	1419	23	2.73
3720	442	1399	23	2.69
3780	436	1379	22	2.65
3840	430	1359	22	2.61
3900	424	1339	21	2.57
3960	418	1320	20	2.53
4020	412	1300	- 20	2.50
4080	406	1280	19	2.46
4140	400	1260	19	2.42

4200	394	1240	18		2.38
4260	388	1221	17		2.34
4320	382	1201	17	-	2.31
4380	376	1181	16		2.27
4440	370	1161	16		2.23
4500	364	1141	15		2.19
4560	358	1122	14		2.15
4620	352	1102	14		2.12
4680	346	1082	13		2.08
4740	340	1062	13		2.04
4800	334	1042	12		2.00
4860	328	1023	11		1.96
4920	322	1003	11		1.93
4980	316	983	10		1.89
5040	310	963	10		1.85
5100	304	943	9		1.81
5160	298	924	8		1.77
5220	292	904	8		1.74
5280	286	884	7		1.70
5340	280	864	7		1.66
5400	274	844	6		1.62
5460	268	825	5		1.58
5520	262	805	5		1.55
5580	256	785	4		1.51
5640	250	765	4		1.47
5700	244	745	3		1.43
5760	238	726	2		1.39
5820	232	706	2		1.36
5880	226	686	1		1.32
5940	220	666	1		1.28
6000	214	646	0		1.24
6060	208	627			1.20
6120	202	607			1.17
6180	196	587			1.13
6240	190	567			1.09
6300	184	547			1.06
6360	178	528			1.02
6420	172	508			0.98
6480	166	488			0.94
6540	160	468			0.91
6600	154	448			0.87
6660	148	429			0.83
6720	142	409			0.79
6780	136	389			0.76
6840	130	369			0.72
6900	124	349			0.68
6960	118	330			0.65
7020	112	310			0.61
7080	106	290			0.57

7140	100	270	0.53
7200	94	250	0.50
7260	88	231	0.46
7320	82	211	0.42
7380	76	191	0.39
7440	70	171	0.35
7500	64	151	0.31
7560	58	132	0.27
7620	52	112	0.24
7680	46	92	0.20
7740	40	72	0.16
7800	34	52	0.13
7860	28	33	0.09
7920	22	13	0.05
7980	16		0.02
8040	10		0.01
8100	4		0.01

Maumelle 2000 Dry Weather Diurnal Flow

Year 2010 - Projected Maumelle Response to a 12-hour 5-Year Frequency Rain Event

Ison RDII Response Curves for 12 Hour Event

> Volume of Infiltration $=0.592 \times$ Total I / I Volume
> Volume of Inflow $=0.408 \times$ Total I / I Volume
> Peak Infilitration $=(\text { Volume of Infiltration } \times 2 / 9.76)^{\wedge} 0.5$
> Peak Inflow $=(\text { Volume of Inflow } \times 2 / 2.40)^{\wedge} 0.5$
> Duration of infiltration in minutes $=9.76 \times$ Peak Infiltration Flowrate in gpm Duration of inflow minutes based upon shape of inflow triangle

Total Volume RDII $=$	6.02	MG
Volume of Infil $=$	3.56	MG
Volume of Inflow $=$	2.46	MG
Peak Infilitration $=$	855	gpm
Peak Inflow $=$	1431	gpm
Duration infil $=$	8341	minutes
Duration inflow $=$	1847	minutes
Inflow Decline $\mathbf{t}=$	1127 minutes	Peak
S Inflow Decline $=$	1.27 gpm/minute	
S Infil Decline $=$	0.10 gpm/minute	
Inflow Infil transition	2116 minutes	
S to Peak	3.17 gpm/minute	

Hinson RDII Response Curves for 12 Hour Event

Volume of Infiltration $=0.701 \times$ Total I/I Volume
Volume of Inflow $=0.299 \times$ Total III Volume
Peak Infilitration $=(\text { Volume of Infiltration } \times 2 / 3.00)^{\wedge} 0.5$
Peak Inflow $=(\text { Volume of Inflow } \times 21.647)^{\wedge} 0.5$
Duration of infiltration in minutes $=3.00 \times$ Peak Infiltration Flowrate in gpm
Duration of inflow minutes based upon shape of inflow triangle

Total Volume RDII $=$	15.46	MG
Volume of Infil $=$	10.84	MG
Volume of Inflow $=$	4.62	MG
Peak Infilitration $=$	2688	gpm
Peak Inflow =	3780	gpm
Duration infil =	8064	minutes
Duration inflow =	1822	minutes
Inflow Decline t =	1102	minutes
S Inflow Decline =	3.43	gpm/minute
S Infil Decline =	0.33	gpm/minute
Inflow /Infil transition	2122	minutes
S to Peak =	8.98	gpm/minute

North Slope RDII Response
Designed to Mirror Hinson \& Ison Response Shapes

Projected Peak RDII	Flow $=$	786	gpm
S to Peak	Slope $=$	1.09	$\mathrm{gpm} /$ minute
Inflow Decline	Flow $=$	0.55	$\mathrm{gpm} /$ minute
S Infil Decline	Slope $=$	0.010	$\mathrm{gpm} /$ minute

Timer in Minutes	Project RDII Flows in gpm				Total RDII in MGD
0	0	0		0	0
60	190	539	66		1.15
120	380	1078	131		2.29
180	571	1616	197		3.44
240	761	2155	262		4.58
300	951	2694	328		5.73
360	1141	3233	393		6.87
420	1331	3772	459		8.02
480	1522	4310	524		9.16
540	1712	4849	590		10.31
600	1902	5388	655		11.45
660	2092	5927	721		12.60
720	2286	6468	786		13.75
780	2210	6262	721		13.25
840	2137	6062	362		12.34
900	2063	5860	346		11.92
960	1988	5657	329		11.49
1020	1914	5454	312		11.07
1080	1840	5251	295		10.65
1140	1765	5048	278		10.22
1200	1691	4846	262		9.80
1260	1616	4643	245		9.38
1320	1542	4440	228		8.95
1380	1468	4237	211		8.53
1440	1393	4034	194		8.10
1500	1319	3832	178		7.68
1560	1244	3629	161		7.26
1620	1170	3426	144		6.83
1680	1096	3223	127		6.41
1740	1021	3020	110		5.99
1800	947	2818	94		5.56
1860	872	2615	77		5.14
1920	798	2412	60		4.71
1980	724	2209	43		4.29
2040	649	2006		2 Inflow to	3.89

2100	624	1968	41 Infiltration	3.80
2160	618	1948	40 Transition	3.76
2220	612	1929	40 Period	3.72
2280	606	1909	39	3.68
2340	600	1889	39	3.64
2400	594	1869	38	3.61
2460	588	1849	37	3.57
2520	582	1830	37	3.53
2580	576	1810	36	3.49
2640	570	1790	36	3.45
2700	564	1770	35	3.42
2760	558	1750	34	3.38
2820	552	1731	34	3.34
2880	546	1711	33	3.30
2940	540	1691	33	3.26
3000	534	1671	32	3.23
3060	528	1651	31	3.19
3120	522	1632	31	3.15
3180	516	1612	30	3.11
3240	510	1592	30	3.07
3300	504	1572	29	3.03
3360	498	1552	28	3.00
3420	492	1533	28	2.96
3480	486	1513	27	2.92
3540	480	1493	27	2.88
3600	474	1473	26	2.84
3660	468	1453	25	2.81
3720	462	1434	25	2.77
3780	456	1414	24	2.73
3840	450	1394	24	2.69
3900	444	1374	23	2.65
3960	438	1354	22	2.62
4020	432	1335	22	2.58
4080	426	1315	21	2.54
4140	420	1295	21	2.50
4200	414	1275	20	2.46
4260	408	1255	19	2.43
4320	402	1236	19	2.39
4380	396	1216	18	2.35
4440	390	1196	18	2.31
4500	384	1176	17	2.27
4560	378	1156	16	2.24
4620	372	1137	16	2.20
4680	366	1117	15	2.16
4740	360	1097	15	2.12
4800	354	1077	14	23
4860	348	1057	13	13
4920	342	1038	12	2.08
4980	336	1018		

5040	330	998	12	1.93
5100	324	978	11	1.89
5160	318	958	10	1.85
5220	312	939	10	1.82
5280	306	919	9	1.78
5340	300	899	9	1.74
5400	294	879	8	1.70
5460	288	859	7	1.66
5520	282	840	7	1.63
5580	276	820	6	1.59
5640	270	800	6	1.55
5700	264	780	5	1.51
5760	258	760	4	1.47
5820	252	741	4	1.44
5880	246	721	3	1.40
5940	240	701	3	1.36
6000	234	681	2	1.32
6060	228	661	1	1.28
6120	222	642	1	1.25
6180	216	622	0	1.21
6240	210	602	0	1.17
6300	204	582		1.13
6360	198	562		1.10
6420	192	543		1.06
6480	186	523		1.02
6540	180	503		0.98
6600	174	483		0.95
6660	168	463		0.91
6720	162	444		0.87
6780	156	424		0.84
6840	150	404		0.80
6900	144	384		0.76
6960	138	364		0.72
7020	132	345		0.69
7080	126	325		0.65
7140	120	305		0.61
7200	114	285		0.58
7260	108	265		0.54
7320	102	246		0.50
7380	96	226		0.46
7440	90	206		0.43
7500	84	186		0.39
7560	78	166		0.35
7620	72	147		0.32
7680	66	127		0.28
7740	60	107		
7800	54	87		
7860	48	67		
7920	42	48		

7980	36	28	0.09
8040	30	8	0.05
8100	24		0.03
8160	18		0.03
8220	12		0.02
8280	6		0.01
8340	0		0.00

Maumelle 2010 Dry Weather Diurnal Flow

Projected Maumelle Hydrograph - Year 2010-Twelve Hour 5-Year Frquency Event

| | | | Base Q | RDII |
| :---: | ---: | ---: | ---: | ---: | Hydrograph

	6:00	6.34	5.56	11.90
	7:00	5.71	5.14	10.85
	8:00	4.10	4.71	8.82
	9:00	4.05	4.29	8.34
	10:00	2.96	3.89	6.85
	11:00	2.99	3.80	6.78
	12:00	3.09	3.76	6.85
	13:00	2.90	3.72	6.62
	14:00	2.72	3.68	6.40
	15:00	2.57	3.64	6.21
	16:00	3.13	3.61	6.74
	17:00	3.59	3.57	7.16
	18:00	3.95	3.53	7.48
	19:00	4.18	3.49	7.67
	20:00	4.85	3.45	8.30
	21:00	5.06	3.42	8.47
	22:00	3.65	3.38	7.03
	23:00	2.50	3.34	5.84
Wed	0:00	2.10	3.30	5.41
	1:00	2.01	3.26	5.27
	2:00	1.83	3.23	5.06
	3:00	1.65	3.19	4.84
	4:00	1.86	3.15	5.01
	5:00	2.81	3.11	5.92
	6:00	5.79	3.07	8.86
	7:00	5.30	3.03	8.34
	8:00	4.66	3.00	7.66
	9:00	3.81	2.96	6.77
	10:00	3.33	2.92	6.25
	11:00	3.19	2.88	6.07
	12:00	3.04	2.84	5.89
	13:00	3.08	2.81	5.89
	14:00	2.78	2.77	5.55
	15:00	2.75	2.73	5.48
	16:00	3.06	2.69	5.76
	17:00	3.64	2.65	6.29
	18:00	3.82	2.62	6.44
	19:00	4.22	2.58	6.80
	20:00	4.65	2.54	7.19
	21:00	4.77	2.50	7.27
	22:00	3.67	2.46	6.14
	23:00	2.56	2.43	4.99
Thur	0:00	1.91	2.39	4.30
	1:00	1.69	2.35	4.04
	2:00	1.74	2.31	4.05
	3:00	1.75	2.27	4.02
	4:00	1.77	2.24	4.01
	5:00	3.06	2.20	5.25
	6:00	6.09	2.16	8.25
	7:00	5.34	2.12	7.46
	8:00	4.21	2.08	6.29
	9:00	3.85	2.05	5.90
	10:00	3.22	2.01	5.22
	11:00	3.17	1.97	5.14
	12:00	3.02	1.93	4.95
	13:00	3.11	1.89	5.00
	14:00	2.76	1.85	4.62
	15:00	2.92	1.82	4.73
	16:00	3.21	1.78	4.98
	17:00	3.84	1.74	5.58

	18:00	4.08	1.70	5.78
	19:00	4.07	1.66	5.73
	20:00	4.28	1.63	5.91
	21:00	4.71	1.59	6.30
	22:00	3.84	1.55	5.39
	23:00	2.77	1.51	4.28
Fri	0:00	2.21	1.47	3.68
	1:00	1.98	1.44	3.42
	2:00	1.73	1.40	3.13
	3:00	1.61	1.36	2.97
	4:00	1.70	1.32	3.02
	5:00	2.55	1.28	3.83
	6:00	4.95	1.25	6.20
	7:00	5.14	1.21	6.35
	8:00	4.82	1.17	5.99
	9:00	4.86	1.13	5.99
	10:00	4.29	1.10	5.39
	11:00	3.57	1.06	4.63
	12:00	3.60	1.02	4.62
	13:00	3.40	0.98	4.39
	14:00	3.33	0.95	4.28
	15:00	3.23	0.91	4.14
	16:00	3.58	0.87	4.45
	17:00	4.11	0.84	4.95
	18:00	3.76	0.80	4.56
	19:00	3.84	0.76	4.60
	20:00	3.95	0.72	4.68
	21:00	3.46	0.69	4.14
	22:00	2.61	0.65	3.26
	23:00	2.11	0.61	2.72
Sat	0:00	1.92	0.58	2.50
	1:00	1.63	0.54	2.17
	2:00	1.49	0.50	1.99
	3:00	1.50	0.46	1.97
	4:00	1.73	0.43	2.15
	5:00	2.37	0.39	2.76
	6:00	3.53	0.35	3.89
	7:00	5.10	0.32	5.42
	8:00	4.91	0.28	5.19
	9:00	4.77	0.24	5.01
	10:00	4.32	0.20	4.53
	11:00	4.11	0.17	4.27
	12:00	3.94	0.13	4.07
	13:00	3.95	0.09	4.04
	14:00	3.81	0.05	3.87
	15:00	3.65	0.03	3.68
	16:00	3.95	0.03	3.98
	17:00	3.84	0.02	3.86
	18:00	4.07	0.01	4.08
	19:00	4.04	0.00	4.04
	20:00	3.82		3.82
	21:00	3.37		3.37
	22:00	2.62		2.62

Projected Maumelle Response to 12-Hour 5-year Storm in Year 2010

Year 2025 - Projected Maumelle Response to a 12-hour 5-Year Frequency Rain Event

Ison RDII Response Curves for 12 Hour Event

> Volume of Infiltration $=0.592 \times$ Total I / I Volume
> Volume of Inflow $=0.408 \times$ Total I / I Volume
> Peak Infilitration $=(\text { Volume of Infiltration } \times 2 / 9.76)^{\wedge} 0.5$
> Peak Inflow $=(\text { Volume of Inflow } \times 2 / 2.40)^{\wedge} 0.5$
> Duration of infiltration in minutes $=9.76 \times$ Peak Infiltration Flowrate in gpm Duration of inflow minutes based upon shape of inflow triangle
Total Volume RDII $=\quad 6.16 \quad \mathrm{MG}$

Volume of Infil $=$	3.65	MG
Volume of Inflow $=$	2.51	MG
Peak Infilitration $=$	864	gpm
Peak Inflow $=$	1447	gpm
Duration infil $=$	8437	minutes
Duration inflow $=$	1847	minutes
Inflow Decline $=$	1127	minutes
S Inflow Decline $=$	1.28	gpm/minute
S Infil Decline $=$	0.10	gpm/minute
Inflow /Infil transition	2116	minutes
S to Peak	3.21	gpm/minute

Hinson RDII Response Curves for 12 Hour Event

> Volume of Infiltration $=0.701 \times$ Total I / I Volume
> Volume of Inflow $=0.299 \times$ Total I / I Volume
> Peak Infilitration $=(\text { Volume of Infiltration } \times 2 / 3.00)^{\wedge} 0.5$
> Peak Inflow $=(\text { Volume of Inflow } \times 2 / .647)^{\wedge} 0.5$
> Duration of infiltration in minutes $=3.00 \times$ Peak Infiltration Flowrate in gpm
> Duration of inflow minutes based upon shape of inflow triangle

Total Volume RDII $=\quad$ 16.27 \quad MG

Volume of Infil =	11.41	MG
Volume of Inflow $=$	4.86	MG
Peak Infilitration $=$	2757	gpm
Peak Inflow $=$	3878	gpm
Duration infil =	8272	minutes

Duration inflow $=$	1822	minutes
Inflow Decline $t=$	1102	minutes
S Inflow Decline $=$	3.52	$\mathrm{gpm} /$ minute
S Infil Decline $=$	0.33	$\mathrm{gpm} /$ minute
Inflow /nfil transition	2122	minutes
S to Peak =	9.22	gpm/minute

North Slope RDII Response

Designed to Mirror Hinson \& Ison Response Shapes

| Projected Peak RDII | Flow $=$ | 1552 gpm |
| :--- | :--- | ---: | :--- |
| S to Peak | Slope $=$ | $2.16 \mathrm{gpm} /$ minute |
| Inflow Decline | Flow $=$ | $1.08 \mathrm{gpm} /$ minute |
| S Inflil Decline | Slope $=$ | $0.010 \mathrm{gpm} /$ minute |

$\begin{gathered} \text { Timer } \\ \text { in Minutes } \\ \hline \end{gathered}$	Project RDII Flows in gpm				$\begin{array}{\|c\|} \hline \text { Total RDII } \\ \text { in MGD } \\ \hline \end{array}$
	Ison	Hinson	Other		
0	0	0	0		0
60	193	553	129		1.26
120	385	1106	259		2.52
180	578	1660	388		3.78
240	770	2213	517		5.05
300	963	2766	647		6.31
360	1156	3319	776		7.57
420	1348	3872	905		8.83
480	1541	4426	1035		10.09
540	1733	4979	1164		11.35
600	1926	5532	1293		12.62
660	2119	6085	1423		13.88
720	2311	6635	1552		15.13
780	2234	6424	1487		14.62
840	2157	6213	1422		14.12
900	2081	6001	1358		13.61
960	2004	5790	1293		13.10
1020	1927	5579	1228		12.59
1080	1850	5368	1163		12.08
1140	1773	5157	1098		11.57
1200	1697	4945	1034		11.06
1260	1620	4734	969		10.56
1320	1543	4523	904		10.05
1380	1466	4312	839		9.54
1440	1389	4101	774		9.03
1500	1313	3889	710		8.52
1560	1236	3678	645		8.01
1620	1159	3467	580		7.50
1680	1082	3256	515		7.00
1740	1005	3045	450		6.49
1800	929	2833	386		5.98
1860	852	2622	321		5.47
1920	775	2411	256		4.96
1980	698	2200	191		4.45
2040	640	2057	126	Inflow to	4.07
2100	634	2037		Infiltration	3.94
2160	628	2017		Transition	3.87
2220	622	1997		Period	3.84
2280	616	1977	41		3.80
2340	610	1958	41		3.76
2400	604	1938	40		3.72
2460	598	1918	39		3.68
2520	592	1898	39		3.65

2580	586	1878	38	3.61
2640	580	1859	38	3.57
2700	574	1839	37	3.53
2760	568	1819	36	3.49
2820	562	1799	36	3.45
2880	556	1779	35	3.42
2940	550	1760	35	3.38
3000	544	1740	34	3.34
3060	538	1720	33	3.30
3120	532	1700	33	3.26
3180	526	1680	32	3.23
3240	520	1661	32	3.19
3300	514	1641	31	3.15
3360	508	1621	30	3.11
3420	502	1601	30	3.07
3480	496	1581	29	3.04
3540	490	1562	29	3.00
3600	484	1542	28	2.96
3660	478	1522	27	2.92
3720	472	1502	27	2.88
3780	466	1482	26	2.85
3840	460	1463	26	2.81
3900	454	1443	25	2.77
3960	448	1423	24	2.73
4020	442	1403	24	2.69
4080	436	1383	23	2.66
4140	430	1364	23	2.62
4200	424	1344	22	2.58
4260	418	1324	21	2.54
4320	412	1304	21	2.50
4380	406	1284	20	2.47
4440	400	1265	20	2.43
4500	394	1245	19	2.39
4560	388	1225	18	2.35
4620	382	1205	18	2.31
4680	376	1185	17	2.28
4740	370	1166	17	2.24
4800	364	1146	16	2.20
4860	358	1126	15	2.16
4920	352	1106	15	2.12
4980	346	1086	14	2.08
5040	340	1067	14	2.05
5100	334	1047	13	2.01
5160	328	1027	12	1.97
5220	322	1007	12	1.93
5280	316	987	11	1.89
5340	310	968	11	1.86
5400	304	948	10	1.82

5460	298	928	9	1.78
5520	292	908	9	1.74
5580	286	888	8	1.70
5640	280	869	8	1.67
5700	274	849	7	1.63
5760	268	829	6	1.59
5820	262	809	6	1.55
5880	256	789	5	1.51
5940	250	770	5	1.48
6000	244	750	4	1.44
6060	238	730	3	1.40
6120	232	710	3	1.36
6180	226	690	2	1.32
6240	220	671	2	1.29
6300	214	651	1	1.25
6360	208	631	0	1.21
6420	202	611	0	1.17
6480	196	591		1.13
6540	190	572		1.10
6600	184	552		1.06
6660	178	532		1.02
6720	172	512		0.99
6780	166	492		0.95
6840	160	473		0.91
6900	154	453		0.87
6960	148	433		0.84
7020	142	413		0.80
7080	136	393		0.76
7140	130	374		0.73
7200	124	354		0.69
7260	118	334		0.65
7320	112	314		0.61
7380	106	294		0.58
7440	100	275		0.54
7500	94	255		0.50
7560	88	235		0.47
7620	82	215		0.43
7680	76	195		0.39
7740	70	176		0.35
7800	64	156		0.32
7860	58	136		0.28
7920	52	116		0.24
7980	46	96		0.20
8040	40	77		0.17
8100	34	57		0.13
8160	28	37		0.09
8220	22	17		0.06
8280	16			0.02
8340	10			0.01
8400	4			0.01

Projected Maumelle Hydrograph - Year 2025 - Twelve Hour 5-Year Frquency Event

	$5: 00$	4.29	6.49	10.78
	6:00	9.84	5.98	15.82
	7:00	8.86	5.47	14.33
	8:00	6.37	4.96	11.33
	9:00	6.29	4.45	10.74
	10:00	4.59	4.07	8.66
	11:00	4.64	3.94	8.58
	12:00	4.79	3.87	8.67
	13:00	4.51	3.84	8.34
	14:00	4.22	3.80	8.02
	15:00	3.98	3.76	7.74
	16:00	4.86	3.72	8.58
	17:00	5.57	3.68	9.26
	18:00	6.12	3.65	9.77
	19:00	6.49	3.61	10.10
	20:00	7.52	3.57	11.09
	21:00	7.85	3.53	11.38
	22:00	5.67	3.49	9.16
	23:00	3.89	3.45	7.34
Wed	0:00	3.27	3.42	6.68
	1:00	3.12	3.38	6.49
	2:00	2.84	3.34	6.18
	3:00	2.56	3.30	5.86
	4:00	2.88	3.26	6.15
	5:00	4.36	3.23	7.59
	6:00	8.99	3.19	12.18
	7:00	8.23	3.15	11.38
	8:00	7.24	3.11	10.35
	9:00	5.92	3.07	8.99
	10:00	5.17	3.04	8.21
	11:00	4.94	3.00	7.94
	12:00	4.73	2.96	7.69
	13:00	4.78	2.92	7.71
	14:00	4.31	2.88	7.19
	15:00	4.26	2.85	7.11
	16:00	4.76	2.81	7.56
	17:00	5.65	2.77	8.42
	18:00	5.93	2.73	8.66
	19:00	6.55	2.69	9.25
	20:00	7.22	2.66	9.87
	21:00	7.41	2.62	10.03
	22:00	5.70	2.58	8.28
	23:00	3.97	2.54	6.52
Thur	0:00	2.97	2.50	5.48
	1:00	2.63	2.47	5.09
	2:00	2.70	2.43	5.13
	3:00	2.71	2.39	5.10
	4:00	2.75	2.35	5.10
	5:00	4.74	2.31	7.06
	6:00	9.46	2.28	11.73
	7:00	8.29	2.24	10.53
	8:00	6.54	2.20	8.74
	9:00	5.98	2.16	8.14
	10:00	4.99	2.12	7.12
	11:00	4.92	2.08	7.00
	12:00	4.69	2.05	6.73
	13:00	4.83	2.01	6.84
	14:00	4.29	1.97	6.26
	15:00	4.53	1.93	6.46

	16:00	4.98	1.89	6.87
	17:00	5.96	. 1.86	7.81
	18:00	6.33	1.82	8.15
	19:00	6.31	1.78	8.09
	20:00	6.65	1.74	8.39
	21:00	7.31	1.70	9.02
	22:00	5.96	1.67	7.63
	23:00	4.30	1.63	5.92
Fri	0:00	3.43	1.59	5.02
	1:00	3.08	1.55	4.63
	2:00	2.69	1.51	4.20
	3:00	2.50	1.48	3.98
	4:00	2.64	1.44	4.08
	5:00	3.96	1.40	5.36
	6:00	7.69	1.36	9.05
	7:00	7.99	1.32	9.31
	8:00	7.48	1.29	8.77
	9:00	7.54	1.25	8.79
	10:00	6.66	1.21	7.87
	11:00	5.54	1.17	6.71
	12:00	5.59	1.13	6.72
	13:00	5.28	1.10	6.38
	14:00	5.17	1.06	6.23
	15:00	5.01	1.02	6.03
	16:00	5.55	0.99	6.54
	17:00	6.38	0.95	7.33
	18:00	5.84	0.91	6.75
	19:00	5.95	0.87	6.83
	20:00	6.13	0.84	6.97
	21:00	5.36	0.80	6.16
	22:00	4.06	0.76	4.82
	23:00	3.28	0.73	4.00
Sat	0:00	2.98	0.69	3.67
	1:00	2.53	0.65	3.18
	2:00	2.31	0.61	2.93
	3:00	2.33	0.58	2.91
	4:00	2.68	0.54	3.22
	5:00	3.67	0.50	4.18
	6:00	5.48	0.47	5.95
	7:00	7.92	0.43	8.35
	8:00	7.62	0.39	8.01
	9:00	7.40	0.35	7.75
	10:00	6.71	0.32	7.03
	11:00	6.37	0.28	6.65
	12:00	6.12	0.24	6.36
	13:00	6.12	0.20	6.33
	14:00	5.91	0.17	6.08
	15:00	5.66	0.13	5.79
	16:00	6.14	0.09	6.23
	17:00	5.97	0.06	6.02
	18:00	6.32	0.02	6.34
	19:00	6.28	0.01	6.29
	20:00	5.92	0.01	5.93
	21:00	5.23		5.23
	22:00	4.06		4.06

Projected Maumelle Response to 12-Hour 5-year Storm in Year 2025

LITTLE ROCK WASTEWATER UTILITY COLLECTION SYSTEM FACILITIES PLAN

TECHNICAL MEMORANDUM - DATA INVENTORY / VALIDATION

SUBJECT: Data Inventory / Validation DATE: September 19, 2000

PREPARED BY: Andy Baldwin
MW FILE:

This Technical Memorandum (TM) describes the data inventory and validation phase of the hydraulic modeling task for the Little Rock Wastewater Utility (LRWU) Collection System Facilities Plan. The model will be used to analyze the capacity requirements of the existing trunk sewer system and to verify that proposed trunk facilities will provide adequate capacity for future flows. The model database will be provided to LRWU so that LRWU staff can perform future updates and analyses of area-specific projects.

DATA SOURCES AND USE IN MODEL DEVELOPMENT

The basic sources of data for the LRWU model are data and graphic files maintained by various departments of LRWU. These include ArcView GIS files of pipes, manholes, and flow meter basins; GIS file of buildings; pump station data; land use mapping; industrial flow and billing data; and rainfall and flow monitoring data. This TM describes how the manhole and pipe data sources were validated for the six basins in the Little Rock study area.

MODEL BASINS

The data validation was conducted for the six separate model area basins as defined in Table 1. The initial manhole and pipe data received from LRWU was divided into the six areas to assist the data management and validation process. The data was converted into a node and link format suitable for using with ArcADE, the GIS data management software toolkit used for model construction and calibration.

Table 1: Basin and Model Area Designations

Area Basin ID	Description
100	Riverfront $(8502$ acres $)$
200	North 60 $(9213$ acres $)$
300	South $60(23698$ acres $)$
400	Fourche $(31562$ acres $)$
500	District $142(24980$ acres $)$
600	Maumelle $(9211$ acres $)$

ARCADE DATA VALIDATION PROCESS

The ArcADE GIS data management toolkit contains a number of utilities for processing and validating sewer asset data. The toolkit contains a validation routine that queries and identifies data anomalies such as missing pipe inverts, negative slopes etc. The data validation rules applied during the first validation phase are displayed in Figure 1. The validation results are tabulated and joined to the node and link themes to display the validation problems. In addition, ArcADE displays profiles showing ground, pipe inverts and manhole locations. The profiles are used to visually identify pipe slope errors and invert steps. An example profile is displayed in Figure 2.

Figure 1: Data Validation Rules

Figure 2: Example Profile View

DATA VALIDATION RESULTS

Montgomery Watson conducted extensive review and data validation of the original pipe and manhole GIS and data files provided by the LRWU. This validation process identified a number of problems with the data with respect to its use for model building. Note that such "problems" are not necessarily errors or mistakes, but in many cases are simply limitations of the data or graphical format that result in problems for modeling. Example problems included disconnect between graphical and tabular data; pipes disconnected from the system; pipes with reversed upstream/downstream nodes; duplicate manhole numbers; plugged or abandoned pipes; missing data (e.g., diameters, rim or invert elevations); flow diversions; and incorrect "matching" invert elevations for different diameter pipes. Montgomery Watson, assisted by LRWU staff, corrected many of the data problems and developed missing information through the use of site surveys and examination of record drawings. However, most of these corrections and additions were limited to the modeled trunk sewers (primarily 10 -inch diameter and larger). Montgomery Watson has provided the LRWU with a detailed listing of all such problems found and corrections made to the model database.

DATA VALIDATION SUMMARY

The following pages summarize the validation results for the six sewer basin areas. The tables show the number of errors identified during the initial data validation of the sewer data for the 10 -inch and larger network. The North 60 and Fourche basins have been merged into one model basin.

LITTLE ROCK WASTEWATER UTILITY
 COLLECTION SYSTEM FACILITIES PLAN

 TECHNICAL MEMORANDUM - FLOW MONITORING

 TECHNICAL MEMORANDUM - FLOW MONITORING}

SUBJECT: Flow Monitoring DATE: June 05, 2001
PREPARED BY: Andy Baldwin

MW FILE:

This Technical Memorandum (TM) describes the flow and rain data used for the hydraulic model calibration task for the Little Rock Wastewater Utility (LRWU) Collection System Facilities Plan. The model will be used to analyze the capacity requirements of the existing trunk sewer system and to verify that proposed trunk facilities will provide adequate capacity for future flows. The model database will be provided to LRWU so that LRWU staff can perform future updates and analyses of area-specific projects.

1. INTRODUCTION

Rainfall and flow monitoring data are used for calibration of the hydraulic model. ArcADE can import these types of data from various formats, including Sigma flow meter data files.

Rainfall data are used to generate event rainfall files (RED files) for HydroWorks. Radar rainfall data was obtained from NEXRAIN Corporation and imported into ArcADE, then converted into HydroWorks for selected wet-weather events.

After the model is run for a specific rainfall event, the resulting model simulated flow hydrographs at flow meter locations are compared to actual flow monitoring data. The flow monitoring data for the period January through April 1999 and January and February 2000 were used for model calibration. The calibration process and results are discussed later in this TM.

2. FLOW METER DATA

The flow meter data was obtained from a temporary flow monitoring contract conducted by Pitometer, Byrd / Forbes (PBF). The goals of the contract were to provide LRWU with dry and wet weather sewer flows for model calibration, measure I/I quantities upstream of each flow meter site, measure pump output of four LRWU pump stations, and monitor groundwater levels at eight locations in the collection system.

PBF installed 63 gravity flow meters, 4 force main flow meters, 8 groundwater gauges, 5 sewer gas meters and 8 rain gauges throughout the study area. A summary of the flow meters including meter locations, model references, and location descriptions is shown in Table 2.1.

Table 2.1 Flow Meter Locations

Meter_Name	Meter_Id	Node_Ref	Link_Ref	Comment
site015	015	-2E010	-2E009.1	Pleasant Valley, 31802 Split
site014	014	-2E037	-2E036.1	Pleasant Valley, 31802 Split
site059	059	2B002	2B006.1	Jimerson Creek West
site058	058	2 C 112	2C113.1	Jimerson Creek East
site003	003	0F146	0E171.1	Echo Valley, move monitor to 0F146
site057	057	6C006	6C007.1	Longfellow/Palisades
site006	006	1F056	1F055.1	Foreman Lake
site 126	126	8E099	8E091.1	Country Club Hollow
site 125	125	8E013	7E016.1	Allsopp Park North
site034	034	5H008	5H004.1	Upper Coleman
site055	055	9 F 024	9 F 058.1	Allsopp Park South
site001	001	OF003	0F002.1	Walnut Valley, 31801 Split
site002	002	0F013	0F012.1	Walnut Valley, 31801 Split
site005	005	$1 \mathrm{G119}$	1G120.1	Rock Creek East/Baptist Hospital
site004	004	1G075	1G076.1	Natural Resource Complex
site112	112	10G066	10G065.1	Rose Creek
site032	032	6 L 008	6L009.1	Middle \& Lower Coleman
site031	031	6 K 022	6K020.1	District No.119, moved upstream
site029	029	91064	91065.1	Barton North
site009	009	2 J 066	2J067.1	District No. 137
site 122	122	16K009	16K010.1	Norfh 60 Summation
site123	123	16 K 005	16K006.1	South 60 Summation
site063	063	131049	131050.1	Quapaw North
site019	019	15 K 019	15K020.1	Garden Homes
site021	021	14 K 005	14K004.1	Quapaw South
site010	010	2K143	2K144.1	Barrow Addition/South Boyle Park
site 100	100	7 K 092	7K093.1	District 84 new interceptor
site026	026	11L049	11L050.1	Swaggerty parallel
site025	025	11L023	11L024.1	Swaggerty
site028	028	9 K 034	9K035.1	Barton South
site023	023	12K019	12K020.1	Washington Elementary/Ives Court
site105B	05B	4N014	4N013.1	dual probe, $24{ }^{\prime \prime}$ and 42", Brodie Creek Interc.
site018	018	20003	2 O 004.1	Reinstate at BFA request, Brodie Creek East
site104B	04B	20026	2 O 024.1	24" Brodie Creek Interconnection
site106	106	11 L 092	11L091.1	Interstate Park Interconnect/LR02
site 105	105	4N014	4N089.1	dual probe, $24{ }^{\prime \prime}$ and 42", Brodie Creek Interc.
site062	062	14L003	14L004.1	Granite Mountain
site012	012	3M005	3M006.1	Western Hills

site036	036	5M009	5M036.1	Mabelvale Pike
site037	037	70012	70013.1	65th Industrial/Wakefield
site107	107	8Q015	8R006.1	Old 201 Outfall
site124	124	8R051	8R052.1	36" Line upstream of Jamison Road PS
site109	109	6 T 057	6T058.1	Reck Road
site101	101	-8G006	-8G009.1	Rock Creek West/Chennal Parkway
site102	102	-1L003	-1L004.1	Brodie Creek West/Sandpiper
site035	035	5M008	5N001.1	Meadowcliff
site103	103	2 O 008	20009.1	District 142 summation
site044	044	2Q004	2Q005.1	Cloverdale
site043	043	2R053	2R009.1	Chicot
site118	118	0Q007	0Q008.1	Mabelvale
site108	108	6 T 059	6T060.1	District No.201- McClelland High
site110	110	4U014	4U015.1	SID 214/SID 145, 40503 Split
site111	111	4V001	4V002.1	Geyer Springs, 40503 Split
site050	050	17H004	17H003.1	Riverfront Int(Broadway to AFTP)/LR01
site116	116	-10-B007	-10-B008.1	Pinnacle (North Slope)
site113	113	-7-A006	-7-A005.1	Ison
site114	114	-8-A002	-8-A001.1	Hinson Summation
site115	115	-5D008	-5D009.1	Hinson Intra
site120	120	-4T002	-4T013.1	Callahan Creek
site119	119	-3R004	-3R034.1	Haw Creek
sitel17	117	-4U003	-4U004.1	Combination of Alexander and Vimy Ridge
site007	007	2G044	2G045.1	Leawood
site008	008	3H011	3H083.1	Hall High

The flow data was imported into ArcADE by converting the Sigma CSV data into DBF format for each flow meter. The flow meter DBF files, stored in the 'Flows/DBF' folder in the working directory, contain flows (mgd), velocities (ft / s) and depths (ft) recorded at 15 minute intervals. The flow data DBF files are named using 3 character meter ID's defined in the flow meter theme (SHP file). These files are automatically accessed via the ArcADE tools including the hydrograph viewing tool, flow analyzer, and the diurnal profile analyzer.

The flow data was evaluated for missing data or data anomalies such as very low velocity readings caused by 'sensor ragging'. In addition, the data was evaluated for accuracy and consistency by comparing average, minimum and maximum flows for each meter with upstream and downstream meters. For example, flow meters with an average flow less than nearby upstream meters would indicate a data error warranting further investigation. Furthermore, differences between pipe sizes from the flow survey report and pipe sizes in the database were checked to identify errors with flow meter locations. For example, flow meter 108 in the Fourche basin does not correlate with the downstream meters 107 and 124 , plus the pipe size recorded during the flow meter installation does not match the corresponding pipe in the database. Following further investigation, the manhole ID for flow meter 108 was changed from 6 T 059 to 6T006.

The flow monitoring period extended from March $15^{\text {th }} 2000$ to April $28^{\text {th }} 2000$ and captured 5 rain events ranging from 0.50 to 3.09 inches per event. Figures 2.1 and 2.2 display flow and rain data from one of the flow meters and radar cells respectively for the total survey period.

Figure 2.1 Example Flow Hydrograph (MGD) from 03/15/2000 to 04/28/2000

Figure 2.2 Example Rainfall Data (in/hr) from 03/15/2000 to 04/28/2000

3. RAINFALL DATA

The rainfall data used for the project is gauge-adjusted radar-rainfall data provided by NEXRAIN Corporation. Radar rainfall data provides an accurate estimation of the spatial distribution of rainfall which is critical to model calibration. In the past, hydraulic models have been calibrated using rainfall data collected from rain gauge networks providing accurate rain measurements at discrete points, but with poor estimates falling between gauges. On the other hand, radar's strength is its ability to see between the gauges, but lacks the consistency in estimating rainfall at a specific point.

Gauge-adjusted radar rain data is the combination of rain data from a gauge network and rain data derived from radar which takes advantage of the strengths of each measurement system while minimizing their respective weaknesses. Essentially, a radar image is used as an areal template for the spatial distribution of rainfall. The rain gauge data are used to scale the areal template. The net result is a gauge-adjusted radar rainfall data set that combines the spatial distribution characteristics of the radar image with the scaling information from the gauges. NEXRAIN uses 15 -minute radar-rainfall estimates obtained from WSI Corporation, a nationally recognized supplier of weather data. The adjusted radar rainfall data grid is formed of 396 grid cells measuring $2 \mathrm{~km} \times 2 \mathrm{~km}$. The grid covers an area bounded on the west by -92.533° longitude, on the east by -92.131° longitude, on the north by 34.883° latitude and on the south by 34.577° latitude.

The radar data was converted into ArcADE rain data DBF files, and a graphic theme of the grid cells. The data is used to develop HydroWorks rain data (RED) files for selected wet-weather events, and evaluate the spatial variation over the Little Rock study area. Figure 3.1 shows the spatial variation of total rainfall during the flow monitoring period.

Figure 3.1 Total Rain Depths (in) from 03/15/2000 to 04/28/2000

4. ANTECEDENT RAINFALL

Antecedent rainfall effects the inflow and infiltration (RDI/I) by increasing ground and surface wetness, and reducing the 'soil moisture' capacity. As a result, surface runoff and GWI increases when the catchment wetness increases due to preceding rainfall. The antecedent rainfall is assessed by calculating the 5-day Antecedent Rainfall Precipitation Index (API5) for the complete flow monitoring period. The results, shown in Figure 4.1, are used to identify dry and wet-weather events used for model calibration. Ideally, events are selected where the preceding ground condition is relatively 'dry' and at least not saturated from previous rainfall (ie; minimum or ideally zero API5). The equation used to calculate API5 is as follows:

$$
A P I_{5}=\sum_{n=1,5}\left[P_{-n} C^{n-0.5}\right]
$$

where;

$$
\begin{array}{lll}
P & = & \text { daily rainfall depth } \\
C & = & \text { decay coefficient }(=0.7)
\end{array}
$$

The decay coefficient (C) is related to the soil type and effects the magnitude of antecedent rainfall. For example, light sandy soils provide greater drainage which in turn lowers the impact of antecedent rainfall, eventually reducing runoff. A decay coefficient of 0.7 was used for this analysis.

Figure 3.1 Total Rain Depths (in) from 03/15/2000 to 04/28/2000

5. EVENT ANALYSIS

The flow and rain data were used to identify dry and wet weather events for model calibration. Dry weather events include weekday and weekend periods to account for different diurnal patterns resulting from changes in residential and employment behavior. Ideally, dry periods following preceding rainfall should be avoided as this results in high ground water flows. However, satisfying this condition is not always possible during the wet-weather season.

The wet-weather events were selected based on the peak intensity, total depth and storm duration. Table 5.1 lists the dry and wet weather events. In addition, Figure 5.1 displays the 3 wet-weather event rainfall hyetographs showing the variation of intensity and depth.

Table 5.1 Dry and Weather Event Summary

TITLE	REN	$\begin{aligned} & \text { DURATION } \\ & \text { (hrs) } \end{aligned}$	$\begin{aligned} & \text { START } \\ & \text { DATE } \end{aligned}$	START TIME	START DAY	$\begin{aligned} & \text { END } \\ & \text { DATE } \end{aligned}$	$\begin{aligned} & \text { END } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { END } \\ & \text { DAY } \end{aligned}$
DWF Event X (Weekday)	X	48	04/26/2000	00:00	Wednesday	04/28/2000	00:00	Friday
DWF Event Y (Weekday)	Y	48	04/19/2000	00:00	Wednesday	04/21/2000	00:00	Friday
DWF Event Z (Weekend)	\mathbf{Z}	48	04/29/2000	00:00	Saturday	05/01/2000	00:00	Monday
WWF Event A	A	192	03/15/2000	00:00	Wednesday	03/23/2000	00:00	Thursday
WWF Event B	B	383	03/23/2000	00:00	Thursday	04/08/2000	00:00	Saturday
WWF Event C	C	240	04/09/2000	00:00	Sunday	04/19/2000	00:00	Wednesday
Flow Survey Period	T	1055	03/15/2000	00:00	Wednesday	04/28/2000	00:00	Friday

Figure 5.1 Wet Weather Event Hyetographs

LITTLE ROCK WASTEWATER UTILITY COLLECTION SYSTEM FACILITIES PLAN

TECHNICAL MEMORANDUM - MODEL BUILDING

SUBJECT: Model Building DATE: July 18, 2001

PREPARED BY: Andy Baldwin

MW FILE:

This Technical Memorandum (TM) describes the model building phase of the hydraulic modeling task for the Little Rock Wastewater Utility (LRWU) Collection System Facilities Plan. The model will be used to analyze the capacity requirements of the existing trunk sewer system and to verify that proposed trunk facilities will provide adequate capacity for future flows. The model database will be provided to LRWU so that LRWU staff can perform future updates and analyses of area-specific projects.

1. NETWORK DEFINITION

Network definition is the process of identifying nodes and links to be included in the hydraulic model data. The process often referred to as 'simplification' involves selecting critical nodes and links based on size, length, contributing area, type of sewer etc. The user can select the criteria for defining a model network using the Rules dialog accessed from the Trace Manager. The network definition process creates two output files: Node List and a Link List. These files contain a list of nodes and links required for the model network and are used in the Data Extraction process to create the model data files.

The network definition process is conducted using the Trace Manager which provides the engine to select part or all of the master network and apply the model simplification rules. The network definition process involves defining criteria, or "rules", for delineating the portion of the sewer system to be modeled. For the LRWU Master Plan, the criteria for defining the modeled system was based on pipe diameter greater than 10 inches. The ArcADE process of "network definition" consists of tracing upstream through the entire sewer system starting from each "outfall" node (discharge point to the interceptor system), and then "pruning" the network working downstream from each upstream terminal node until the first pipe larger than 10 inches in diameter is reached. All pipes downstream of those points (including any 10 -inch and smaller pipes located downstream of 12 -inch or larger pipes) are included in the model.

2. NETWORK EXTRACTION

Network Extraction is the process of selecting a sub-set of node / link data from the master data files and creating a new set of attribute (DBF) and theme (SHP) files. The process, which is conducted using the Data Extraction Manager, is primarily for creating model attribute (DBF) files based on the node and link list files generated from the network definition process. The format of the output files generated from the Data Extraction Manager is exactly the same as the format of the standard ArcADE attribute files.

In addition to creating model files, the Data Extraction Manager can create a sub-set of the graphic (SHP) and attribute (DBF) files from a user defined selection of the master data set. For example, the user may want to create a brand new set of node, link and sewer basin (SHP and DBF) files from a selected part of the network to reduce the time spent processing large data files.

Model attribute data comprises of node, link and sewer basin (DBF) files that store a simplified set of nodes and links resulting from the model definition process. Although the data tables follow exactly the same format as the master ArcADE attribute data, the content is different. For example, the data will include sewer basins that have been merged and nodes that have been removed due to model simplification. Also, the node file includes converted coordinates required for HydroWorks.

3. POPULATION DATA CONVERSION

The population data is used to estimate the dry weather flows generated from residential and employment populations. The population estimates were derived from on the 'Building Theme' which provided a spatial distribution of all buildings including residential, commercial and industrial buildings. The populations were expressed as equivalent residential units (ERU) per building. For example, a typical single family home was equal to 1 ERU, where as commercial buildings were assigned multiple ERU values.

The ArcView building theme (buildings2.shp) contained a field defining the building code ("Structure_") which allowed the consultant to identify the building type and estimate the ERU based on the building area. However, approximately 60% of the buildings had missing building codes, hence an alternative method of identifying the building type was implemented. The approach compared the building area (ie; 'footprint') with average building footprints for single family, multiple family, commercial and industrial buildings. Building footprints less than $500 \mathrm{ft}^{2}$ were eliminated from the process to avoid including garages, storage sheds etc. The average building footprints were derived from buildings with known types. Table 3.1 below lists the building types with average building footprint areas.

Table 3.1 Average Building Footprint Areas

Description	Structure Code	Minimum Area $\left(\mathbf{f t}^{2}\right)$	Maximum Area (ft ${ }^{2}$)
Mobile Homes	410	500	1000
Single Family	411	1000	3000
Multi Family	414	3000	12000
Commercial	580	12000	50000
Industrial	650	50000	

4. SEWER BASIN PROCESSING

The Sewer Basin Manager processes all the model inflows including dry weather, wet weather, and industrial discharges and exports the inflow data to a 'sewer basin' (DBF) file. The sewer basin file is then loaded into the model export routine. The sewer basin file can either include one record for each sewer basin polygon ('Basin' file), or one record representing a series of consolidated sewer basin polygons ('Model' file).

The Sewer Basin Manager uses the sewer basin polygons to distribute populations, land-use data, rain basins, ground-water infiltration, wet-weather infiltration, industrial discharges and pipe condition rankings. The input data sources can be 'continuously' added to the input sewer basin file, creating an updated sewer basin file.

4.1 Population Distribution

Population data is used to calculate dry weather flows for residential and employment areas. The dry weather flow is calculated in the model by multiplying the population by a per capita flow rate (eg; $75 \mathrm{~g} /$ day/head). The Sewer Basin Manager is used to derive an 'equivalent' population per sewer basin from the residential and employment populations. The following formula is used to calculate the equivalent population:

```
Population(equiv) = Res Pop + [ Emp Pop x (Emp PCF / Res PCF)]
where; Res Pop = Residential Population
    Emp Pop = Employment Population
    Res PCF = Residential Per Capita Flow (eg; 75 g/day/head)
    Emp PCF = Employment Per Capita Flow (eg; 25 g/day/head)
```

The population data consists of one polygon theme (SHP file) representing different 'population zones', joined to an attribute (DBF) file containing residential and employment populations. A different population attribute (DBF) file is used for each year, eg; existing, 2010, build-out etc. The residential and employment populations are distributed by the following method.

1) For each population polygon, calculate the population density (pop/acre)
2) Overlay the population polygons 'on top' of the sewer basin polygons
3) For each sewer basin, identify the population polygon 'fragments'
4) For each fragment, calculate the total population (= fragment area x density)
5) For each sewer basin, sum the fragment populations for residential and employment populations
6) For each sewer basin, calculate the Equivalent' population and enter in the 'Population' field in the sewer basin (DBF) file
7) For each sewer basin, assign a DWF index based on the following split between residential and employment populations

DWF Index	Residential \%	Employment \%
1	$100-90$	$10-0$
2	$90-70$	$30-10$
3	$70-50$	$50-30$
4	$50-30$	$70-50$
5	$30-10$	$90-70$
6	$10-0$	$100-90$

4.2 Land Use Data Distribution

Land-use data consists of a polygon theme containing land-use types such as residential, commercial, transport, vacant areas etc. The land-use data is used to identify 'developed' and 'undeveloped' land areas. Developed land includes all areas that are paved and drained for residential, commercial, and industrial purposes. Un-developed land includes agriculture, vacant land, and parks. For modeling purposes, the developed land is assumed to contribute towards ground water and wet-weather infiltration flows. The following table lists the land-use types used in ArcADE.

Land-Use	Developed
1 Rural Homes (Low Density)	Y
2 Single Family (Medium Density)	Y
3 Multi Family (High Density)	Y
4 Mobile Homes	Y
5 Hotels / Dorms	Y
6 Industrial	Y
7 Transport	Y
8 Commercial	Y
9 Office	Y
10 Services	Y
11 Military	Y
12 Recreational	N
13 Agriculture	N
14 Vacant	N
15 Construction	N

4.3 Rain Basin Allocation

Rain basins are used to spatially distribute rainfall data and are created using methods such as Theissons Polygons or based on radar cells. The rain basin theme contains cell ID's which provide the link to rainfall data contained in separate DBF files.

As the rain basin theme can contain many polygons (especially for radar cells), temporary rain indexes are assigned to each rain basin and then later copied to the sewer basin table during the 'default' processing. Note, HydroWorks limits the number of rain indexes, hence the need to create temporary indexes. These indexes are also used in the rainfall event data (RED) file and cross-referenced with the cell ID's (using the rain basin theme) to export the rain data to HydroWorks. The following summarizes the rain basin allocation method:

1 Overlay the rain basin polygons 'on top' of the sewer basin polygons
2 Select rain basins intersecting the sewer basins
3 For each sewer basin, identify the rain basin polygon that contains the centroid of the sewer basin
4 Starting at ' 1 ', create a rain index (sequentially) for each selected rain basin
5 Write the rain index in the 'Rain_index' field in the rain basin theme and in the $\mathrm{Rg}_{\mathrm{g}} \mathrm{ref}$ ' field in the sewer basin theme

4.4 Pipe Condition Allocation

Pipe condition plays an important role in allocating dry and wet weather infiltration flows. For example, a fractured pipe increases the potential for I/I than a pipe in good structural condition. The process firstly uses the Sewer Basin Manager to derive average pipe conditions for each sewer basin. Then in the Dry and Wet Weather Flow Analyzers, the GWI and percentage effective areas are derived using the 'ranked' contributing area. These values are then fed back into the Sewer Basin Manager to distribute the dry and wet weather inflows.

LITTLE ROCK WASTEWATER UTILITY COLLECTION SYSTEM FACILITIES PLAN

TECHNICAL MEMORANDUM - MODEL INFLOWS

SUBJECT: Model Inflows DATE: September 30, 2001
PREPARED BY: Andy Baldwin
MW FILE:

This Technical Memorandum (TM) describes the development of the model inflows for the hydraulic modeling task for the Little Rock Wastewater Utility (LRWU) Collection System Facilities Plan. The model will be used to analyze the capacity requirements of the existing trunk sewer system and to verify that proposed trunk facilities will provide adequate capacity for future flows. The model database will be provided to LRWU so that LRWU staff can perform future updates and analyses of area-specific projects.

The hydraulic sewer model requires dry weather and wet-weather inflows to assess the hydraulic impact of the existing sewer system. The following describes the methodology and data used to model both dry and wet weather flows.

1. DRY WEATHER MODEL INFLOWS

Dry weather sewer flows are generated from residential populations, commercial and industrial flows, ground water infiltration and rainfall related infiltration. The dominating population based flows were derived from the building and land-use data provided by LRWU with the ground water and rainfall flows derived from the flow meter data.

1.1 Residential and Employment Wastewater Flows

The population data is used to estimate the dry weather flows generated from residential and employment based populations (ie; commercial and industrial). The population estimates were derived from the 'Building Theme' which provided a spatial distribution of all buildings including residential, commercial and industrial buildings. The populations were expressed as equivalent residential units (ERU) per building. For example, a typical single family home was equal to 1 ERU, where as commercial buildings were assigned multiple ERU values.

The ArcView building theme (buildings2.shp) contained a field defining the building code ("Structure_") which allowed the consultant to identify the building type and estimate the ERU based on the building area. However, approximately 60% of the buildings had missing building codes, hence an alternative method of identifying the building type was implemented. The approach compared the building area (ie; 'footprint') with average building footprints for single family, multiple family, commercial and industrial buildings. Building footprints less than $500 \mathrm{ft}^{2}$ were eliminated from the process to avoid including garages, storage sheds etc. The average building footprints were derived from buildings with known types. Table 1.1 below lists the building types with average building footprint areas.

Table 1.1 Average Building Footprint Areas

Description	Structure Code	Minimum Area (ft ${ }^{2}$)	Maximum Area (ft ${ }^{2}$)
Mobile Homes	410	500	1000
Single Family	411	1000	3000
Multi Family	414	3000	12000
Commercial	580	12000	50000
Industrial	650	50000	No limit

Population data was used to calculate dry weather flows for residential and employment areas. The dry weather flow is calculated in the model by multiplying the population by a per capita flow rate (eg; $75 \mathrm{~g} /$ day/head for residential and $25 \mathrm{~g} /$ day/head for employment). The HydroWorks model only accepts one population per sewer basin, therefore it was necessary to derive an 'equivalent' population from the residential and employment populations. The following formula was used to calculate the equivalent population:

Population (equiv) $=$ Res Pop $+[$ Emp Pop x (Emp PCF /Res PCF) $]$
where; Res Pop $\begin{aligned} \text { Emp Pop } & =\text { Residential Population } \\ \text { Res PCF } & =\text { Residenment Population Per Capita Flow (eg; } 75 \mathrm{~g} / \text { day } / \mathrm{head} \text {) } \\ \text { Emp PCF } & =\text { Employment Per Capita Flow (eg; } 25 \mathrm{~g} / \text { day } / \mathrm{head})\end{aligned}$
The Sewer Basin Manager tool within the ArcADE suite, was used to allocate the populations to each sewer basin. This was achieved by overlaying the population theme (ie; converted from the building theme), on top of the sewer basin polygons and spatially distributing the population data.

1.2 Wastewater Diurnal Profiles

Diumal profiles for residential and employment wastewater flows are used to model the daily dry weather flow variation. The profiles were generated from observed flow meter data to create a true representation of time-varying dry weather flows in the Little Rock sewer basin. Flow
meters located in the upstream portions of the network were selected to provide a typical residential profile, and a low-income residential profile. The flow data was averaged and normalized to create flow multipliers for 24 hour weekday and weekend periods. The employment diurnal profile was created from a standard commercial diurnal curve. This standard curve was adjusted during initial calibration based on model results to make it specific to the LRWU system. Figure 1.1 displays the diurnal curves used for this project. The diurnal profiles are stored in the HydroWorks wastewater generator (.WWG) file, and in a corresponding ArcADE data file.

Figure 1.1 Wastewater Diurnal Profiles

1.3 Groundwater Infiltration / Inflow

Groundwater infiltration (GWI) and inflow enters the sewer system via pipe joints, manholes, and pipe cracks, and is typically observed as a constant inflow. The GWI flow varies seasonally, and depending on the soil and ground conditions, the flow will fluctuate according to local rainfall patterns. The flow monitoring data collected for this study shows significantly high GWI throughout the sewer network, and is wide spread throughout the basin.

The GWI flows were derived from the flow monitoring data by extracting the calculated population-based dry weather flow (base DWF) from the observed minimum dry weather flows. Minimum flows typically occur during the nighttime or early morning hours when base
wastewater flows are at a low. Subtracting an estimate of minimum base DWF from the minimum measured flow yields the estimated GWI for each monitored area. The minimum base DWF is typically assumed to be about 15 to 20 percent of average base DWF. The resulting GWI is expressed on a unit basis ($\mathrm{g} / \mathrm{day} / \mathrm{acre}$) by dividing by the sewered acreage of the monitored area.

The GWI flows were distributed throughout the model network using ArcADE by allocating observed GWI rates to the sewer basins. The model was checked by comparing the dry weather flows with the flow monitoring data, to ensure the correct GWI distribution was applied to the model.

2. WET WEATHER MODEL INFLOWS

Wet weather inflows are generated from rainfall dependent inflow and infiltration (I/I) entering the sewer system via cracks, joints, manholes and other 'leaky' defects in the sewer system. Soil conditions, groundwater levels, and the capacity of the storm system effect the quantity and timing of wet weather inflow. The following describes the processes and approach for modeling the wet weather inflows.

2.1 Hydrological Observations

The Little Rock sewer basin exhibits a significant wet-weather flow response observed in the flow meter data collected during the monitoring period. The flow meter data was reviewed to identify the hydrological processes that transform the rainfall to wet-weather inflows, and develop the wet-weather modeling approach. The flow meter data revealed the following observations:

- Delayed infiltration
- Increased infiltration during rainfall event
- Decreasing infiltration after rainfall event
- Rapid flow response is delayed following the initial rainfall
- Groundwater infiltration (GWI) increases during a succession of rainfall events
- Low rapid response flows indicating few direct connections
- Large wet-weather flow variation between flow meters

Following the review and identification of hydrological processes, the consultant developed an approach for modeling the rainfall, runoff and routing processes. Firstly the rainfall describes the intensity and duration of rainfall falling onto the sewer basin during and preceding the event period. The spatial variation of rainfall is significant when relating the rainfall to the wetweather inflow. Secondly, the runoff process converts the rainfall depth to an inflow volume. This process uses an 'effective area' to represent the flow mechanisms such as groundwater seepage, storm water connections, and flow through laterals. Finally, flow routing describes the
translation and attenuation of inflow caused by overland routing, seepage through ground, and slow leakage via cracks.

2.2 Modeling Rainfall

Calibrating the hydrological runoff process requires accurate rainfall and sewer flow volumes to determine the 'effective areas'. Rainfall varies spatially as the storm cells travel over the basin. Topography, land elevations, and localized climatic conditions give rise to significant differences in rainfall volumes during storm periods which need to be accounted for during wet-weather calibration.

The rainfall data used for the project is gauge-adjusted radar-rainfall data provided by NEXRAIN Corporation. The radar rainfall data, comprising of 396 grid cells measuring $2 \mathrm{~km} \times 2 \mathrm{~km}$, provides an accurate estimation of the spatial distribution of rainfall which is critical to model calibration. The radar data was converted into ArcADE rain data DBF files, and a graphic theme of the grid cells. The data is used to develop HydroWorks rain data (RED) files for selected wetweather events, and evaluate the spatial variation over the Little Rock study area. Figure 2.1 shows the spatial variation of total rainfall during the flow monitoring period.

Figure 2.1 Total Rain Depths (in) from 03/15/2000 to 04/28/2000

Initial rainfall losses occur when dry ground conditions soak up the first part of the rainfall hence reducing sewer inflows. During the calibration period (March / April 2000) significant preceding rainfall ensured wet ground conditions, hence minimizing initial rainfall losses. For the purpose
of model calibration, no initial rainfall losses were modeled for the calibration events (ie; Event A and C).

2.3 Modeling Runoff (I/I)

HydroWorks generates wet weather flows by applying runoff parameters to a rainfall hyetograph to generate hydrographs representing the rainfall-induced I / I entering the collection system for a specified rainfall event. Although the runoff parameters in HydroWorks are intended to compute storm water runoff (surface drainage), they can be used effectively to simulate I/I flows by calibrating the parameters to actual metered sewer flows during storm events. Runoff (or I / I) is computed as a percentage of the rainfall falling on the contributing area of a sewershed for each of three components, representing fast, medium, and slow flow responses, respectively. The procedure for calculating and distributing runoff (I/I) is described in the following steps.

1. For each flow meter, compute the wet weather flow component from the storm event hydrograph. This is calculated by extracting the model dry weather volume from the observed storm event hydrograph.
2. Calculate the effective area by dividing the wet weather volume by the total rainfall depth for each flow meter. The effective area is used to convert the rainfall depth into a I/I volume.
3. Wet weather flow enters the sewer system from a variety of sources including paved areas, storm systems, and groundwater. These sources effect the speed and timing of the runoff entering the system. For example, wet weather I / I from direct (paved) connections exhibits a fast response, where groundwater I/I exhibits a slow response. Wet weather flows are modeled by simulating the fast, medium and slow components, which are superimposed to create a single wet weather inflow for each sewer basin. For this study, these components are used as follows:
a) Fast areas model rapid / immediate flow response (eg; direct connections)
b) Medium areas model a delayed flow response with an increasing I/I during the rain event
c) Slow areas model the increase and decrease of GWI resulting from preceding rainfall
4. The wet weather runoff components (fast, medium and slow) are modeled using two HydroWorks modeling methods; 1) Fixed runoff, and 2) Variable runoff. The Fixed runoff method simply applies a percentage runoff factor to derive the proportion of runoff entering the sewer system. This method is used to model the fast and slow runoff components. The Variable runoff method, used for medium runoff, uses the following equation to derive the runoff volume.

Variable Runoff Formula

$$
P R=(100-I F) * N A P I / P F
$$

where;

$P R$	$=$
$I F$	Variable percentage runoff (for slow response areas)
NAPI	$=\quad$ Fast response runoff factor
$P F$	$=\quad$ Soil Moisture Factor

NAPI is defined as a 30-day Antecedent Precipitation Index (API_{30}), with evaporation and initial losses subtracted from rainfall. Antecedent Precipitation Index $\left(\mathrm{API}_{30}\right)$, is derived from the following equation;

$$
A P I_{30}=\sum_{n=1,30}\left[P_{-n} C_{p}^{n-0.5}\right]
$$

where;
$P \quad=\quad$ daily rainfall depth
$C=$ decay coefficient
The decay coefficient (Cp) is related to the soil type and effects the magnitude of antecedent rainfall. For example, light sandy soils provide greater drainage which in turn lowers the impact of antecedent rainfall, eventually reducing runoff. The decay coefficient is derived by setting the default soil class in the HydroWorks DSD file. A default soil class of 1 corresponding to light sandy soils was used for this study.

The Soil Moisture Factor (PF) was calibrated using sample flow meters from the study area and entered into the HydroWorks runoff parameter (PRM) file. The value used for the study was 0.24 in (0.02 ft). Note, the soil moisture factor was only used for the medium response area (Surface Type Index = 3).

2.4 Modeling Routing

The fast, medium and slow runoff component flows are routed overland and through the ground before entering the sewer system. The routing process reduces the peak flow (ie; attenuation), and delays the timing of the peak (ie; translation). These processes are modeled using a linear reservoir storage equation:

$$
S \quad=\quad k q
$$

where;

$$
\begin{array}{rll}
S & = & \text { storage volume } \\
k & = & \text { routing constant } \\
q & = & \text { outflow }
\end{array}
$$

The routing constant is defined in the HydroWorks Runoff Parameter (PRM) file and has been set-up accordingly to model fast, medium and slow response runoff flows. The following runoff constant were used for this study:

Surface Index	Surface Runoff Description	Routing Constant
1	Not Used	10
2	Delayed Runoff	1000
3	Variable Runoff	125

2.5 Model Data Files

A) ArcADE Wet Weather (WW) Data File

Tox may	Dusfur	Win Mr	Basy ${ }^{\text {an }}$	Can - 32xa	E/IF a/83	E/faer	F3st	dreatem	$5 / 2 \mathrm{~m}$
1.547	1.132	0.415	2.59	24.144	5.900	24.44	0	80	20
7.888	4.305	3.583	2.41	77.191	54.747	70.92	0	85	15
9.978	4.112	5.866	2.11	142.201	102.375	71.99	0	80	20
4.718	2.152	2.566	1.96	54,156	48.210	89.02	0	65	35

The above example of an ArcADE wet weather (WW) data file shows the effective area and the distribution between the fast, medium and slow areas. For the Little Rock basin, the 'medium' response areas are used to model delayed inflows and the 'slow' response areas are used to model the immediate inflows contributing from paved surfaces. Note, the 'fast' response area is not used in this study. The table below summarizes the relationship between inflow description, model method, distribution area, HydroWorks surface area index, and runoff index.

Inflow Description	Model Method		WW Distribution	HydroWorks Surface
Not Used	N/A	Rast	1	1
Index				

B) Drainage System Data (DSD) File

Node reference	Surface 1 area	contrib 1	Runoff index 1	Pollution index 1	Surface 2 area	contrib 2	Runoff index 2	Pollution index 2	Surface 3 area	contrib 3	Runaff index 3
-11-A010	0.000		1		1.194		2		0.299		3
-11-A011	0.000		1		0.420		2		0.106		3
-11-AD12	0.000		1		0.405		2		0.101		3

The example HydroWorks DSD file shows three surface areas and corresponding runoff indexes used for modeling wet weather inflows. Surface area 2 is used for modeling 'delayed' inflows, and surface area 3 is used for modeling 'immediate' inflows. The variable runoff equation which is used to model the immediate inflows can only be used for areas defined in surface area 3.

Areas defined in surface areas 1 and 2 are modeled using the fixed runoff equations. For this study, surface area 1 (normally reserved for modeling 'fast' response inflows) was not required. Finally, the default Soil Class is set to 1 in the Node Default record.

C) Runoff Parameter (PRM) File

Surface type	Impermez bility	Depsto. constant	Runoff distr.	Min. runoff	Max. runoff	Ground slope	Routing constant	Starage constant
1	1.00	0.000000	1.00	1.00	1.00	1.0000	10.00	0.000
2	1.00	0.000000	1.00	1.00	1.00	1.0000	1000.00	0.000
3	0.00	0.000000	1.00	0.00	0.00	1.0000	125.00	-0.020

The runoff parameter file (PRM) defines the runoff method, ie; variable or fixed, and the routing constant which governs the attenuation and time lag of the inflow hydrographs. Surface type 2 is used to model the delayed inflow using the fixed runoff equation. The Impermeability, Min. Runoff and Max. Runoff fields define the percentage runoff. For surface types 1 and 2, these fields are set to 1 representing 100% runoff. Alternatively, these fields are set to 0 when using the variable runoff equation as for surface type 3 . In addition, the storage constant is defined when using the variable runoff equation. In this case, storage constant $=-0.02 \mathrm{ft}$ was derived from the initial model calibration.

The routing constants were established during the initial calibration phase based on flow meter observations. As a result, the routing constant for surface type 2 used for modeling the delayed inflows was defined as 1000, and surface type 3 , used for modeling the immediate inflows, was defined as 125 . Note, the maximum allowable routing constant is 1000 .

MONTGOMERY WATSON HARZA

LITTLE ROCK WASTEWATER UTILITY COLLECTION SYSTEM FACILITIES PLAN

TECHNICAL MEMORANDUM - MODEL CALIBRATION

SUBJECT: Model Calibration DATE: January 122002

PREPARED BY: Cathy Cowley
MW FILE:

This Technical Memorandum (TM) describes the model calibration phase of the hydraulic modeling task for the Little Rock Wastewater Utility (LRWU) Collection System Facilities Plan. The model will be used to analyze the capacity requirements of the existing trunk sewer system and to verify that proposed trunk facilities will provide adequate capacity for future flows. The model database will be provided to LRWU so that LRWU staff can perform future updates and analyses of area-specific projects.

1. MODEL CALIBRATION OVERVIEW

Model calibration entails comparison of simulated flows to observed meter data. Model parameters are iteratively adjusted to achieve a satisfactory fit between the model and meter data for both dry and wet weather conditions.

1.1 Modeled System

Although the Little Rock collection system was divided into five basins for data validation and model building, the entire system was joined for final calibration. The complete model system contained 4814 nodes, 4847 links, 3 pump stations and 1 gate. During initial calibration, the system was determined to be too interconnected to achieve a good calibration when modeling sections separately. With the entire system joined, hydraulic limitations affecting large areas could be modeled more accurately. For instance, capacity limitations in the South 60 interceptor cause several problems in the Brodie Creek and Rock Creek areas. These problems were only reflected in the combined model, not in the model divided by service area.

The collection system network and pump stations had to be calibrated. Network calibration involved comparison of simulated flows to actual data at each of the flow meters in the system. Parameters governing per capita flows, diurnal curves, groundwater infiltration, and inflow due to runoff were adjusted to obtain accurate mean flowrates and good fits for maximum and minimum flowrates compared to meter data. Data from 63 temporary flow meters were used for network calibration. These 63 meters were in place from March 15, 2000 through May 9, 2000.

Additional data from five permanent flow meters on the main interceptor sewers were used during wet-weather calibration. Meter locations are shown in Figure 1.1. Refer to the Flow Monitoring TM for a discussion of meter data and a detailed list of meters.

In addition to the model inflow and runoff properties for network calibration, pump stations must be calibrated to mimic actual operation under various conditions. Design pump curves or test curves, if available, were initially used to model pump performance. These curves were then altered based on reported observed flows or, when actual flows were not available, on reported pump on/off durations and wet-well levels. Due to the sequencing of the LRWU pumps, smaller pumps were calibrated during dry-weather calibration, and larger pumps were calibrated during wet-weather calibration. Pump station calibration is discussed in more detail later in this memorandum.

1.2 Calibration Events

Models in Hydroworks are run for a specified event. An event is a user-defined amount of time that can cover a dry or wet-weather period. Calibration events occur during dates when real data is available, while a design event can either be an actual climatic event with real rainfall data or a duration of time with associated hypothetical conditions.

The model must be calibrated for both dry and wet weather events. The dry weather flow (DWF) event used to calibrate the LRWU collection system model was named "Event X." The wetweather flow (WWF) calibration event was called "Event A." Table 1.1 lists the durations and rainfall for these two calibration events and for the design event. The design event is included here because it was an actual rainfall event. Therefore, the calibration could be further verified based on the model response to the design storm compared to observed overflows.

Table 1.1 Calibration and Design Events

Event	Event Type	Event Dates	Rainfall (inches)
Name			0.0
Event X	DWF Calibration	April 26 - April 27, 2000	2.4
Event A	WWF Calibration	March 15 - March 22, 2000	4.1
Event E	Design	November 22 - November 30, 2000	4

Both the dry and wet weather calibration events were chosen from the period from March through May 2000 when the temporary flow meters were in place. Event X was chosen for the DWF calibration event because there was limited precipitation during this period and the several preceding days. Therefore, interference from antecedent conditions was minimal. WWF Event A was chosen as it was the largest rain event while the temporary meters were in place. The WWF calibration event is much longer than the DWF calibration event to allow time to observe the extended response of collection system flows to the actual rainfall event, including both rate of inflow and time required for return to normal dry weather conditions. The design event was chosen because it revealed several capacity problems in the collection system and, as it was the size of a two-year event, met design standards for LRWU.

2. NETWORK CALIBRATION

2.1 Dry Weather Flow Calibration

The objective of DWF calibration is to obtain a good diurnal pattern with the appropriate additional flow from groundwater infiltration (GWI) at each flow meter site. Per capita flows, diurnal profiles, and the amount of flow generated due to GWI can be adjusted to achieve good fits between the model results and the actual meter data. Land use and population information previously entered during the model building phase (refer to the Model Building TM) should not be changed unless a good fit cannot be obtained. Table 2.1 summarizes the model parameters affecting DWF calibration and the ArcADE and Hydroworks files to which they apply.

Table 2.1 DWF Calibration Parameters and Files

Parameter	Effect	ArcADE Input	Hydroworks File
Per Capita Flow (Residential / Commercial)	Average flow rate (Combined with population/land use)	Sewer Basin Process Options Dialog Box	Wastewater Generator (WWG)
Diurnal Curves	Timing and amplitude of maximum, minimum DWF over 24 hours	Diurnal Analyzer (curves edited in Hydroworks)	Wastewater Generator (.WWG)
GWI	Additional flow	Dry Weather Flow File (dwf.dbf)	Drainage System Data (DSD)
Land Use	Specifies diurnal curve per capita flow	Land Use File (lu.shp)	Drainage System Data (DSD)
Population	Average flow rate, (Combined with per capita flow rate per land use)	Population File (po.dbf / po.shp)	Drainage System Data (DSD)

2.2 Diurnal Patterns

Generally, two diurnal curves are developed during calibration: 100\% Residential and 100% Employment (commercial). Hydroworks combines these two curves to create six different curves representing a range of residential/commercial land use combinations. These six curves correspond to the land use index and include 100% residential, 80/20 residential/employment, $60 / 40,40 / 60,20 / 80$, and 100% employment. For the LRWU collection system model, a seventh curve representing low-income residential areas was also developed. During initial calibration, diurnal profiles in low-income residential areas exhibited much different qualities than in other residential areas. Maximum flows in low-income areas tended to occur later, and higher flowrates were observed throughout the day and later into the night. Figure 2.1 shows meter data from a primarily residential area in the Little Maumelle service area. Compare this flow pattern to that seen in Figure 2.2, meter data from the low-income Barton area of Little Rock. In both figures, the red line shows recorded flows and the green line shows recorded depths for DWF Event X.

Figure 2.1 Dry Weather Flow Meter Data, Little Maumelle

Figure 2.2 Dry Weather Flow Meter Data, North Barton

This area and other areas described by staff at LRWU as low-income could not be properly calibrated using the standard residential curve initially developed. A list of these areas is included in Attachment 1. The seventh, low-income residential curve was used only for primarily residential areas. It was not combined with the employment curve to create intermediate diurnal curves. Figure 2.3 shows the main (residential, employment, and lowincome residential) final calibrated diurnal curves used in the LRWU collection system model.

Figure 2.3 Diurnal Profiles: Residential, Commercial, and Low-Income Residential

The two residential diurnal patterns shown in Figure 2.3 were developed using the Diurnal Profile Analyzer in ArcADE. This tool combines actual data from specified flow meters to develop a diurnal profile for the model. The flow meter data chosen to develop these two curves were from primarily residential or low-income residential flow meter basins, respectively, and were determined to show typical characteristics for these areas. The employment curve used was based on a standard commercial diurnal curve. This standard curve was adjusted during initial calibration based on model results to make it specific to the LRWU system.

2.3 Unit Flow Rates and Industrial Flows

For the LRWU collections system model, residential per capita flows were determined prior to calibration based on population and water use data. Refer to the Model Inflows TM for more information about this process. Employment flows were determined during calibration to be 30 million gallons per equivalent residential unit (ERU). An equivalent residential unit was defined to be one single-family residence. The number of ERU's in a commercial property was based on
land use information, if available, or building square footage. See the Model Building TM for more information about ERU's and employment populations.

In flow meter basins 037 and 019 (see Figure 1.1), a satisfactory calibration fit could not be obtained using only the per capita flows and diurnal profiles. The two areas were determined to be highly industrial. Flows in industrial areas generally do not exhibit a diurnal profile; rather, they have a much more constant flow throughout the day. Therefore, trade flows based on water use data were added to the model for these two flow meter basins. Refer to the Model Inflows TM for further discussion of trade flows.

2.4 Groundwater Infiltration (GWI)

GWI is applied to the model after the diurnal profiles of the model results compare well with the actual meter data. The DWF Analyzer in ArcADE is used to apply the appropriate amount of GWI. This tool bases the amount of GWI on a comparison between modeled and actual maximum flows for the dry weather event. Due to irregularities in meter data, the GWI had to be manually edited at several locations following the initial estimate from the DWF Analyzer. Refer to the Model Inflows TM for more information about GWI.

2.5 DWF Calibration Results

Overall the fits between modeled and metered data for the calibrated model during Event X were good. An example of the results from the calibrated model compared to the meter data is shown in Figure 2.4 for flow meter 055, in the Cantrell area. Graphs for every meter are included in Attachment 1. The smooth green line shows the modeled results, while the red line shows the actual meter data. Table 2.2 shows the statistical comparison of the model results to the meter data.

Table 2.2 Comparison of Model and Meter Data, Site 055

	Meter Data	Model Results	\% Error
Average Flow	1.3	1.37	5.4
Maximum Flow	1.93	2.01	4.1
Minimum Flow	0.81	0.91	12.3

Figure 2.4 DWF Calibration Results Example

Relatively high percent error can be common for maximum and minimum flow since meter data are much more variable than model results.

Flow meter 6, in the South 60 service area, was statistically the poorest calibrated of all the flow meters. Figure 2.5 shows the graph of the model and meter flow comparison, and Table 4 lists the numerical results.

Table 2.3 Comparison of Model and Meter Data, Site 006

	Meter Data $(\mathbf{m g d})$	Model Results $(\mathbf{m g d})$	\% Error

Figure 2.5 DWF Calibration Results, Site006

Although the comparison between the model results and the meter data is relatively poor at this site, this inaccuracy is not expected to have a serious impact on the final model. The flowrate in this basin is very low compared to downstream areas; this particular basin discharges into a pipe with a maximum dry weather flow of approximately 3 mgd . This situation is true of most of the flow meters that had relatively poor calibration fits. Site 122, on the North 60 interceptor, is the only site that could be a cause for concern, as this is a major interceptor and average modeled flows are approximately 25 percent greater than metered flows. However, the LRWU system is dominated by wet-weather. Although calibration of the diurnal patterns and dry weather flows was necessary, flow meter data demonstrates that the system response to wet-weather overwhelms dry weather diurnal patterns.

2.6 Wet Weather Flow Calibration

The objective of wet weather flow (WWF) calibration is to accurately model the system response to rainfall. Runoff routing and effective area distribution are the main parameters that can be altered to achieve good fits between model results and meter data. Table 2.4 summarizes the model parameters affecting WWF calibration and the ArcADE and Hydroworks files to which they apply.

Table 2.4 WWF Calibration Parameters and Files

Parameter	Effect/Properties	ArcADE Input	Hydroworks File
Runoff Routing	Specify runoff type, soil moisture, depression storage. Affects the speed and volume of runoff entering system.	N/A	Runoff Parameters (PRM)
Total Effective Area	Total area from which runoff occurs. Affects the total amount of runoff entering system.	Wet-weather flow file	Drainage System Data (DSD)
Effective Area Distribution	Determines the fast, medium, and slow system response.	Wet-weather flow file	Drainage System Data (DSD)

A thorough explanation of runoff routing and effective areas, in general and as applied in the LRWU collection system model, can be found in the Model Inflows TM.

Model runoff parameters in the Hydroworks .prm file were set during initial calibration based on model results from flow meters in the Little Maumelle service area. As described in the Model Inflows TM, runoff routing included fixed and variable runoff components, which accounted for delayed and fast runoff, respectively. The runoff routing parameters also included depression storage equal to approximately 2.5 percent of the total rainfall depth. Modeled depression storage has the effect of preventing some initial rainfall from entering the collection system. As the rainfall event continues, depression storage has successively less effect.

Following initial calibration, the total effective areas and the effective area distributions were edited for each flow meter basin until satisfactory comparisons between model results and meter data were obtained. If the peak flow due to the rainfall event was not high enough, the effective area for the fast response was increased. Likewise, the delayed response was altered to achieve the appropriate trailing response. If the flow was overall too high or too low, the total effective area was adjusted. The WWF file for the calibrated model, which details the effective areas for each flow meter basin, is included in Attachment 2.

2.7 WWF Calibration Results

Overall the fits between modeled and metered data for the calibrated model during Event A were good. An example of the results from the calibrated model compared to the meter data is shown in Figure 2.6 for flow meter 59. Table 2.5 lists the numerical comparison for this meter. Graphs for every meter are included in Attachment 1. The smooth green line shows the modeled results, while the red line shows the actual meter data.

Figure 2.6 WWF Calibration Results Example

Table 2.5 Comparison of Model and Meter Data, Site 059
$\left.\begin{array}{|l|c|c|c|}\hline & \begin{array}{c}\text { Meter Data } \\ (\mathbf{m g d})\end{array} & \begin{array}{c}\text { Model Results } \\ (\mathbf{m g d})\end{array} & \text { \% Error }\end{array}\right]$

Although both of the peak flows due to rainfall were modeled well at this particular site, this result was not generally true of all flow meter sites. The second peak in flow resulted from a much smaller amount of rain than the first peak. This second peak was typically not reproduced well in the model. However, as the first peak was larger and much more significant than the second, this result is not expected to negatively impact the model's usefulness for design purposes.

As seen in the graphs of all meters, included in Attachment 2, the quality of the WWF model calibration was somewhat less consistent from meter to meter than the DWF calibration. This result was expected, however, as inflow due to rainfall runoff can vary greatly depending on terrain, soil type, and pipe condition. This variability is normal and does not diminish the effectiveness of the model as a design tool.

3. DESIGN EVENT CALIBRATION

Design storms are based on long-term historical rainfall data. During November 2000, LRWU experienced a significant rainfall event following a prolonged month of antecedent rainfall producing high groundwater conditions. The rainfall duration exceeded 48 hours and generated over 5 inches of total rainfall. For this study, the November 2000 observed rainfall event was used as the 'design event' to identify and develop solutions for the master plan.

The observed rainfall event was quantified in terms of return period by comparing the recorded depth and duration with rainfall intensity-duration-frequency (IDF) relationships. The rainfall event equates to a design event with a return period between 2 and 5 years. In addition to meeting LRWU design storm criteria, the November 2000 event was selected for the following reasons;

- Rainfall event exceeds LRWU design criteria
- Provides a realistic spatial distribution of rainfall
- Coincides with reported hydraulic spills / flooding
- Used for confirming model calibration with permanent flow meters
- The storm occurred after an unusually long period of rainfall giving rise to high groundwater I/I creating a worst-case scenario.
- Rain data obtained from available rainfall radar data providing an accurate spatial representation of rainfall depths.

The 'design storm' is an observed rainfall event and hence allowed the consultant to verify model predictions against observed flow data obtained from LRWU's permanent flow meters. Initial findings revealed differences between the model and the design storm occurring due to changes in hydrological conditions. The overall effect was proportionally lower inflows for large rainfall events resulting from excessive surcharging and backing up preventing rainfall inflow from entering the system.

The model was calibrated using flow and depth data from four permanent flow meters. The flow meter data was poor eliminating 2 flow meters due to missing data during the design event period. In addition, the remaining flow meters located in the North and South interceptors provided limited data due to surcharged flows 'cutting-off' the peaks. However, the model was primarily calibrated against reported spill locations. Detailed spill reports were obtained during the design event period and plotted in the GIS. This allowed the model spill locations to be compared with observed spills, hence verifying the model predictions. Where necessary, the wet-weather I/I parameters were adjusted. In some cases the model predicts additional overflow locations which were not reported by LRWU. This is due to the unmodeled small diameter pipes reducing in-line storage hence over predicting overflows in the upstream sections of the model.

LITTLE ROCK WASTEWATER UTILITY

HYDRAULIC MODELING/COLLECTION SYSTEM FACILITY PLAN SECAP SYSTEM EVALUATION AND CAPACITY ASSURANCE PLAN

PUMP STATION
TECHNICAL MEMORANDUM FINAL DRAFT

APRIL 2001

LITTLE ROCK
WASTEWATER UTILITY

JAMISON ROAD PUMP STATION HYDRAULIC PROFILE

pumps

Stage 1.1 Small pump $-25 h p$
Stage 3-1 Large pump
Stage 4 - 2 Large pumps
Stage 5 - 3 Large pumps
Note: Pumps of the same size with the least daily runtime are the next to be called.

Station Information

Address: 8001 Jamison Road
Telephone: 565-9317
Entergy Acct. \#: 2063296
Power Service: 480 VAC 3 phase
Structure Type. Large lift station
Pump Erand: Hydromatic Pumps Type: Submersible Small Pumps 4 \& 5: 25 hp Large Pumps 1, 2 \& 3: 150 hp

PUMP STATION TECHNICAL MEMORANDUM

INTRODUCTION

Background

This Technical Memorandum (TM) has been prepared as part of an overall project entitled "Hydraulic Modeling/Collection System Facility Plan." The Facility Plan will document the analysis of system performance through evaluation of the collection system and pump stations. A modeling effort is also part of the Facility Plan. Modeling will simulate and predict collection system performance with emphases on capacity, hydraulics, overflows and future growth of the system. This TM focuses on the pump station evaluation.

The Little Rock Wastewater Utility (LRWU) owns and operates two wastewater treatment plants. Both plants are located in the eastern part of the city, relatively close to where the Arkansas River begins to flow in a southerly direction. The Adams Field Wastewater Treatment Plant has a design flow of 36 million gallons per day (MGD) with a pumping capacity of 72 MGD, while the Fourche Creek Wastewater Treatment Plant has a design flow of 16 MGD with a pumping capacity of 40 MGD . The LRWU also owns and operates the associated collection system and pumping stations. Maps 1 and 2, found in Appendix A, show the collection system, including major sewer lines, wastewater treatment plants, and pump stations.

Purpose

This TM focuses on three of the pump stations: Little Maumelle, Cantrell, and Jamison. The performance and condition of these pump stations were evaluated as they relate to the Facility Plan. The completed findings will be presented in the Facility Plan.

A straightforward approach was used to gather the information for this TM. Site visits were conducted to assess the condition of each pump station. Crist Engineers, in conjunction with Byrd-Forbes, performed a hydraulic examination as part of this evaluation. Information, such as nameplate data and meter location, was gathered on the pumps and collection system. Interviews were conducted with LRWU staff, including Roy Cannon (Engineering Technician), Bill Hall (Pump and Equipment Supervisor) and Dale Gilbert (Instrumentation Supervisor), in order to understand operation and maintenance (O\&M) issues pertaining to the pumps and pump stations. Field evaluation forms, which can be found in Appendices B, C and D for each pump station, were completed to document the findings of the site visits. This TM will present preliminary recommendations based on the findings of the site visits.

COLLECTION SYSTEM DESCRIPTION

The Little Maumelle and Cantrell Pump Stations are located in the northern part of the City of Little Rock, while the Jamison Pump Station is located in the southern part of the City. The Little Maumelle Pump Station is located upstream of the Cantrell Pump Station. Both stations are part of the Adams Field Wastewater Treatment Plant collection system. The Jamison Pump Station pumps wastewater to the Fourche Creek Wastewater Treatment Plant (refer to Maps 1 and 2 in Appendix A).

Little Maumelle Pump Station

The Little Maumelle Pump Station is located at 6600 Pinnacle Valley Road in the northwest part of the City. This pump station was constructed around 1985. Flow enters the pump station from the west through a 36 -inch concrete conduit. Figure 1 shows the entrance to the pump station. The Little Maumelle Pump Station has four submersible pumps located in a single wet well. The pump station is equipped with a Polysonic Compu-Flow flow meter, located on the force main in a manhole adjacent to the valve vault. The accuracy of the flow meter has been suspect because of turbulence created by current operational practices of throttling the plug valves on the pump discharge to approximately 25% open. The Little Maumelle Pump Station also has a pig launching port for maintenance of the force main. The Little Maumelle Pump Station does not have a grease mixer.

Figure 1. Little Maumelle Pump Station.
The wet well dimensions are 40 feet deep, 40.5 feet long and 22 feet wide. The invert elevation is 221.66 feet. Pump information is summarized in Table 1. Two flow and head performance points for each pump are shown in Table 1. Plan and section views of the Little Maumelle Pump Station are shown in Figure M-2 found in Appendix B.

Table 1 - Pump Data for Little Maumelle Pump Station

	Pump 1	Pump 2	Pump 3	Pump 4
Manufacturer	Davis EMU	Davis EMU	Davis EMU	Davis EMU
Capacity (gpm)	400,750	400,750	2000,3750	2000,3750
Head (ft)	42,55	42,55	81,105	81,105
Horsepower	20	20	150	150
Type	FA152-230 trim Sewage	FA152-230 trim Sewage	FA253-440z trim Sewage	FA253-440z trim Sewage
Installation Date	1985	1985	1985	1985
On / Off Levels (ft)*	$231.5 / 230.5$	$232.5 / 230.5$	$240 / 230.5$	$241 / 230.5$
Speed (rpm)	1,750	1,750	1,175	1,175

*The current On/Off Levels can be viewed or printed by accessing SCADA screen LMPS3B (see Appendix B)

Cantrell Pump Station

The Cantrell Pump Station is located at 1901 Cantrell Road, and is situated centrally in the northern part of the City. It is the oldest of the three pump stations being evaluated, having been constructed around 1969. Figure 2 shows the entrance to the pump station. Wastewater enters the pump station through both a 36 -inch and a 42 -inch concrete pipe. The 36 -inch line serves the Rose Creek Basin and the 42 -inch line serves the Rebsamen Basin. Wastewater leaves the pump station through a 30 -inch concrete force main. Previously, a venturi meter located in an adjacent vault was the flow measurement device. However, this meter has recently been replaced with a non-invasive Doppler meter attached to a spool piece. The Cantrell Pump Station does not have a grease mixer.

This station has four pumps in a dry well, and a wet well divided into two compartments. The pumps are located in the dry well. The dry well dimensions are a depth of 52 feet, a length of 34 feet, and a width of 22 feet. The wet well is approximately 53.5 feet deep, 17 feet long (each), and 10 feet wide. There is a dividing wall in the wet well with a gated opening. The invert elevation of the influent pipes is 220 feet, and the wet well bottom is 208 feet. Pump information is summarized in Table 2. Plan and section views of the Cantrell Pump Station are shown in Figures M-1 and M-1A found in Appendix C.

PUMP STATION TECHNICAL MEMORANDUM

Figure 2. Cantrell Pump Station

Table 2 - Pump Data for Cantrell Pump Station

	Pump 1	Pump 2	Pump 3	Pump 4
Manufacturer	Fairbanks Morse	Fairbanks Morse	Flygt	Flygt
Capacity (gpm)	8,200	8,200	6,000	6,000
Head (ft)	78	78	138	138
Horsepower	250	250	329	329
Type	Centrifugal	Centrifugal	Submersible	Submersible
Installation Date	1967	1967	1986	1986
On / Off Levels (ft)	$225 / 219$	$227 / 219.5$	$228 / 220$	$229 / 221$
Speed (rpm)	880	880	1,185	1,185

*The current On/Off Levels can be viewed or printed by accessing SCADA screen CRPS3B
(see Appendix \mathbf{C}) (see Appendix C)

Jamison Pump Station

The Jamison Pump Station is located at 8001 Jamison Road. The newest of the three pump stations that were evaluated, Jamison Pump Station was constructed around 1995. Figure 3 shows the entrance to the pump station. Wastewater enters the pump station from the south through a 36 -inch iron pipe. Wastewater leaves the pump station through a 24 -inch pipe. No flow meter is currently in use at this pump station. The station is equipped with a pig
launching port, which has never been used. The Jamison Pump Station is equipped with a grease mixer.

Figure 3. Jamison Pump Station.
The Jamison Pump Station has five submersible pumps located in a single wet well. The wet well dimensions are 40 feet deep, 30 feet long and 20 feet wide. The invert elevation is 221.66 feet. Pump information is summarized in Table 3. Three flow and head performance points for each pump are shown on Table 3. Plan and section views of the Jamison Pump Station are shown in Figure M-3 found in Appendix D.

Table 3 - Pump Data for Jamison Pump Station

	Pump 1	Pump 2	Pump 3	Pump 4	Pump 5
Manufacturer	Hydromatic	Hydromatic	Hydromatic	Hydromatic	Hydromatic
Capacity (gpm)	6060,4200, 3620	6060,4200, 3620	6060,4200, 3620	2700,2085, 800	2700,2085, 800
Head (ft)	$43,66,78$	$43,66,78$	$43,66,78$	$25,35,50$	$25,35,50$
Horsepower	150	150	150	25	25
Type	Hydromatic S12L	Hydromatic S12L	Hydromatic S12L	Hydromatic S8L	Hydromatic S8L
Installation Date	1993	1993	1993	1993	1993
On / Off Levels (ft)	$230.6 / 228$	$231 / 228.3$	$231.6 / 228.6$	$232.6 / 228.9$	$233.6 / 229$
Speed (rpm)	1750	1750	1750	870	870

The current On/Off Levels can be viewed or printed by accesssing SCADA screen JRPS3B (see Appendix D)

METHODOLOGY AND APPROACH

On two consecutive days, November 8, 2000 and November 9, 2000, personnel from LRWU, Montgomery Watson and Crist Engineers conducted site visits. The objective of the site visits was to assess the condition, hydraulics, and O\&M procedures of each pump station. The site visits consisted of a visual inspection of each pump station, and focused on pumps, structure, piping, valves, concrete, grinders, and equipment control. Visual observations of wet well interiors were made from top access hatches only-no manned entries of wet wells were performed. Information was obtained regarding the pumps operated at each station, as well as the flows observed at each station. Information was also gathered relating to the O\&M procedures employed at each pump station. Maintenance personnel were interviewed and SCADA procedures were reviewed. Digital photographs were taken and printouts of SCADA computer screens were obtained. Photocopies of the field forms utilized to document information can be found in Appendices B, C, and D for each pump station. Findings of the site visits are presented in the following section.

PUMP STATION ASSESSMENTS

Findings of the site visits are presented in this assessment section. Information is presented independently for each of the three pump stations is presented. For each pump station, the findings are placed into four categories: Condition Assessment, Hydraulic Analysis, Operations and Maintenance, and Miscellaneous. The 'Miscellaneous' category consists of odor problems and modifications desired by the operators.

Little Maumelle Pump Station

Wastewater enters the pump station from the west through a 36 -inch line. A gate valve is located at the entrance to the wet well (refer to Figure 4). A grinder (refer to Figures 5 and 6) reduces large solids in the wastewater before entering the wet well, where the pumps are located (refer to Figure 7). The Little Maumelle Pump Station has two small pumps (Pumps 1 and 2) and two large pumps (Pumps 3 and 4).

Figure 4. Influent gate at Little Maumelle Pump Station.

Figure 5. Grinder used at the Little Maumelle Pump Station.

Guide rails are used to install and remove the pumps. The pumps discharge through the dry well wall to a common manifold located underneath the pavement, adjacent to the perimeter of the dry well (refer to Figures 8 and 9). The wastewater is then pumped to the Rebsamen Interceptor, a 30 -inch gravity main that eventually flows to the Cantrell Pump Station.

Cantrell then pumps wastewater into the Riverfront Interceptor, which flows to the Adams Field WWTP.

Figure 6. Grinder control panel.

Figure 7. Wet well where submersible pumps are located.

Figure 8. Pump discharge piping in dry well.

Figure 9. Dry well location.

Condition Assessment

From an overall perspective, the Little Maumelle Pump Station is in good condition.

Equipment

Equipment appeared to be in acceptable operating condition. Except for the grinder controls, the switchgear and controls for the pump station equipment are located in the pump building. The grinder controls are housed in an outside structure, which is protected from the elements. The pump control panels appeared to be in acceptable working order.

Crane

The overhead crane was not operated during the site visit, but site visit personnel were informed that the crane was operational. The crane moves along rails to the end of the loading platform (refer to Figure 10). Currently, an object must be placed onto the platform before the crane is capable of moving the object. Future consideration should be given to modifying either the crane or the loading platform so objects can be removed directly from truck beds without having to be loaded onto the platform.

Figure 10. Crane and loading platform.

Pump Noise

During the visit to the pump station, no unusual pump noises were heard.

Rust

No indications of rust were evident on the piping in the dry well.

Corrosion (Concrete)

No corrosion problems were apparent. Although the wet well walls do not have a protective coating, no degrading or aggressive corrosion of the walls is apparent at this time.

Hydraulic Analysis

During the wet-weather season, the pumps run longer to maintain a normal wet well level. A significant amount of storage volume is available in the upstream line. The original pumps and impellers are still used.

Pump Curves

The pump curves are located in Appendix B.

Flow Tests

As part of a concurrent project, Byrd-Forbes has been contracted with LRWU to perform tests to verify pump capacities and characterize the flows being experienced at each pump station. They will also develop pump curves to demonstrate current pump performance.

Operation and Maintenance

Pumps

Pumps 1 and 2 cannot operate when either Pump 3 or 4 is running. Additionally, Pumps 3 and 4 are interlocked (hard-wired together) so that only one can operate at a time. To operate both large pumps simultaneously, the contactor on the pump that is not running needs to be physically depressed. Additionally, if flows increase downstream and the Cantrell Pump Station is experiencing high flows, the instrumentation at the Cantrell Pump Station signal the Little Maumelle Pump Station to reduce pumping. That signal will shut down the large pump that is operating and turn on the two small pumps.

A current problem exists with condensation accumulation in the motor windings. Every Tuesday, each pump is cycled for 45 minutes to ensure that each motor is functioning properly. Space heaters may be required for these motors.

Currently the two 150 horsepower pumps (Pumps 3 and 4) are throttled, and the two 20 horsepower pumps (Pumps 1 and 2) are not. The discharge valve on each pump is only $1 / 4$ open in order to reduce flow because of downstream capacity problems. If the discharge valves were fully open, the potential exists for more downstream sanitary sewer overflows. Currently sanitary sewer overflows have been observed at a manhole located about one-half mile upstream from the Little Maumelle Pump Station.

The pump station is operated based upon wastewater levels in the wet wells measured by a bubbler-type level instrument. Two redundant level instruments, a pressure transducer and a float-type instrument are installed in the wet well. The pump station is operated remotely with an Allen-Bradley SLC 5/03 processor. Radio signals, via Metricom, relay information between the pump station and the Adams Field Wastewater Treatment Plant.

Electrical

Electrical switchgear and motor control centers are operational and have no identifiable problems.

Instrumentation (SCADA)

The SCADA graphics screen for the Little Maumelle Pump Station, found in Appendix B, shows the different pumping scenarios employed at this pump station. Stage 1 calls for the operation of one of the small pumps. Stage 2 calls for both small pumps to operate. At Stage 3 , the small pumps cease operation and one large pump begins to operate.

Gages

None noted.

Valves

Air regularly becomes trapped in the force main, thereby decreasing the available capacity of the pipeline.

There are no air/vacuum valves located on the discharge manifold to remove the excess air.

Screens / Grinders

A Muffin Monster grinder reduces the diameter of solids in the wastewater stream prior to reaching the pumps. The Muffin Monster grinder replaced two Weissman grinders, and has been operating successfully since the original installation.

Automatic Generator

An automatic generator (refer to Figure 11) located on-site serves as an emergency power supply. Operating procedures noted that after starting, the generator has to be operated for a minimum period of 30 minutes.

Figure 11. Automatic generator located onsite.

Housekeeping

Asphalt paved areas are showing signs of erosion of the base material.

Figure 12. Deteriorated asphalt.

Maintenance

Operational/maintenance problems noted were condensation in the motors on the pumps and grease build-up on the wastewater surface in the wet well.

Loading and unloading with the crane is difficult because of the limited reach of the crane relative to the drive area.

During high influent flows, the elevation of the grinder chamber permits short-circuiting over the grinders and into the wet well.

Miscellaneous

Odor complaints are currently not a problem at the Little Maumelle Pump Station, although there have been complaints at a discharge manhole in the downstream distribution system. Prior experience with the station and force main has shown a tendency for septicity in the force main during low flow periods.

A Polysonic Compu-Flow flow meter is located on the force main, in a manhole adjacent to the valve vault (refer to Figures 13 and 14). The Little Maumelle Pump Station also has a pig launching port for maintenance of the force main.

Figure 13. Manhole to be used for location of flow meter.

Figure 14. Flow meter

Cantrell Pump Station

Wastewater enters this pump station through both the Rebsamen Interceptor (42-inch line from the west) and Rose Creek (36-inch line from the east). A sluice gate is located on each influent line for flow control (refer to Figure 15). Two additional gates are installed to direct the combined wastewater flows into each half of a segregated wet well. The wet well is subdivided by a concrete wall. A 36 -inch square opening at the bottom of the wall is equipped on the east face with an Armco 55-10 gate to permit flow between the two chambers, if necessary. The gate remains open under normal operating conditions. Bar screens are located inside each wet well to keep solids from entering the wet well and subsequently impacting the operation of the pumps (refer to Figure 16). The bar screens were installed under a separate contract approximately 15 years ago, after the pump station was constructed.

Figure 15. Influent gate valves.

Figure 16. Bar screen currently being repaired.
The Cantrell Pump Station is equipped with four pumps located in the dry well. Two of the pumps are submersible pumps being operated in a dry well application (refer to Figure 17). A close up photograph of the Fairbanks Morse pumps, drive shafts, and motors are shown in Figures 18 through 20.

Figure 17. Close up of the four pumps used at the Cantrell Pump Station.

Figure 18. Close up of Fairbanks Morse pumps

Figure 19. Close up of the Fairbanks Morse motors.

Figure 20. Extended drive shafts for Fairbanks Morse pumps.
Wastewater leaves the pump station, flowing through piping in the nearby vault shown in Figure 21. The old venturi meter (refer to Figure 23) was replaced with a new spool piece and strap-on Polysonic Compu-Flow meter for measurement of wastewater flow leaving the pump station (refer to Figure 22). The position of the knife gate valve remained as shown in Figure 23.

Figures 21 and 23. Meter vault located adjacent to pump station; Old venturi meter.

Figure 22. Flow Meter

Condition Assessment

Equipment

Equipment appeared to be operating adequately during the site visit, with two exceptions. One bar screen was out of service and undergoing extended repair (refer to above Figure 164) and Pump Number 1 was experiencing a high degree of cavitation.

The bar screens are located in the building over the wet well in a very limited space condition. The screens have been noted as a source of odor problems, however, there was no evidence of corrosion in the upper portion of the wet well.

Both Flygt pumps (Pumps 1 and 2) are experiencing excessive cavitation. The hydraulic condition of the pump station needs to be evaluated to determine the cause of the cavitation.

Crane

Figure 24 shows the crane that transports objects (primarily pumps and motors) into and out of the dry well. The interior floor slab has hatches that can be raised to allow access to the lower levels of the dry well. LRWU staff noted that the crane is operational and has no apparent operating problems.

Figure 24. Overhead crane used at the Cantrell Pump Station.

Pump Noise

At the time of the site visit, Pump Number 1 (a Flygt pump) was emitting a loud noise during operation. The pump has since been dismantled by LRWU maintenance, and the source of the noise has been suggested to be cavitation.

Rust
A significant amount of rust was detected on the pumps and discharge piping. Figures 17 and 18 , shown above, indicate rust on the pump volutes and flanges. Figures 25 and 26, below, also confirm the presence of rust on the flanges of the discharge piping. The condition of the return flow line to the wet well (Figure 27) should be assessed for clogging and operation.

Figures 25 and 26. Presence of rust on flanges and discharge piping.

Figure 27. Drain/return line into wet wells off of discharge manifold.

Corrosion (Concrete)

During the site visit, no corrosion was observed on the upper portion of the wet well. However, a crack in the thrust block where Pump 2 connects with the discharge manifold was identified. Photographs of the crack are shown in Figures 28 and 29. Cracks were observed on the top and side of the thrust block.

Figures 28 and 29. Crack in a thrust block for the discharge manifold.

Hydraulic Analysis

Pump Curves

The original pump curves are located in Appendix C. LRWU will perform pump tests and develop new performance curves.

Flow Meter

A venturi meter, located in an adjacent vault, was previously used to monitor flow; however, the meter has recently been replaced with a non-invasive Polysonic Compu-Flow Dopplertype meter attached to a spool piece.

Flow Tests

As part of a concurrent project, Byrd-Forbes has been contracted with LRWU to perform tests to characterize the flows being experienced at each pump station. They will also develop pump curves to demonstrate current pump performance.

Operation and Maintenance

Pumps

The pumps are located in a dry well at the base of the pump station. Pumps 1 and 2 are actually submersible pumps being operated in a dry well application. Pump 1 was experiencing cavitation problems during the site visit. The motors for Pumps 3 and 4 are located on the ground-floor elevation of the pump station (refer to Figure 19). The operating pressure in the discharge manifold was 42 psi at the time of the site visit. All pumps in this station operate at a constant speed. The bottom of the pump station has a dual sump system.

The two Fairbanks Morse pumps (Pumps 3 and 4) start first, followed by the two Flygt pumps. All four pumps can operate at once. Initially, the pump station had three Fairbanks Morse pumps, but the third was removed and replaced with the two Flygt pumps. This replacement occurred at the same time as the bar screen installation, approximately 15 years ago (Plans dated August 1986). The Flygt pumps (Pumps 1 and 2) have experienced
cavitation problems since they were installed. Although the rated capacity of the two Flygt pumps is larger than the Fairbanks Morse pumps, they currently pump less than the Fairbanks Morse pumps. The impellers on the Flygt pumps were trimmed at one time, but the trimmed impellers were removed and replaced with impellers of the original size. The pumps are currently not throttled and the discharge valves are wide open.

During the inspection, missing bolts were detected on the Flygt pumps. Seal water and lubrication oil was leaking from the motor-shaft coupling on the Fairbanks Morse pumps.

The Cantrell Pump Station is operated based upon wet well wastewater levels measured by a bubble-type level instrument. Redundant level instruments include a pressure transducer and a float-type instrument. The Cantrell Pump Station is capable of being operated remotely through the use of an Allen-Bradley SLC 5/03 processor. The communication system uses radio signals, via Metricom, and relays information between the pump station and the Adams Field Wastewater Treatment Plant.

Per LRWU, the Cantrell Pump Station has the capability to operate in a "tertiary" mode. During periods of high stormwater flow, the Cantrell Pump Station will call for the Little Maumelle Pump Station to completely shut down, thereby minimizing overflows in the collection system upstream of the Cantrell Pump Station.

Electrical

Electrical switchgear and motor control centers are operational and have no identifiable problems. No external hook-up for emergency power exists.

Instrumentation (SCADA)

The SCADA graphics screen for the Cantrell Pump Station, found in Appendix C, shows the different pumping scenarios employed at this pump station. Stage 1 calls for operation of one of the small pumps. Stage 2 calls for both small pumps to operate. At Stage 3, both small pumps continue operating and one large pump (3 or 4) begins to operate. At Stage 4, all four pumps (two large and two small) are operating.

Operational conditions are available for observation via the SCADA system

Gages

There is one pressure gage located on the end of the discharge header pipe.

Valves

Upon review, the valves are operational. Only exterior rust problems were observed.
There are no air/vacuum valves located on the discharge manifold to remove the excess air.

Screens / Grinders

The screening equipment is a maintenance issue. One set of screens is currently out of service.

Housekeeping

Due to recent development adjacent to the pump station site, it was noted that the site aesthetics no longer match the surrounding development. Also, it was noted that there are low spots around the pump station that cause water ponding. The entrance road between pump station site fence and Cantrell Road is in disrepair.

Maintenance

The bar screens are very high maintenance and continuously under repair.
The station's odor generation problems are increasing due to material falling from conveyor and bar screens in the bar screen room. The trash bin also generates odor problems when located outside the bar screen room (refer to Figure 30).

Figure 30. Dumpster and conveyor belt.

Miscellaneous

The thrust block where the piping from Pump 2 joins the common discharge manifold is cracked and should be repaired prior to further complications.

The gate valve located downstream of the new meter has not been exercised for several years. Determination of the integrity of the valve is critical. After exiting the vault, the sewer line follows an upward slope for about 3,000 feet. The gate valve is the isolation for maintenance and/or removal of the meter. By opening the valve on the drain/return line (refer to Figure 27), wastewater can be drained from the gate valve, when closed, back to the invert elevation of the drain/return line. Should the valve fail to close properly, and the drain/return line valve be in the open position, the wastewater contents in the 3,000 feet of force main would backflow towards the pump station and discharge into the wet well through the drain/return line.

Currently, no simple method exists to drain the lower portion of the discharge header and column for access and maintenance, since its centerline elevation is approximately 30 below the invert of the 10 -inch diameter drain/return line. In order to drain the lower portion, the check valves would have to be held partially open, and the wet well level would have to be drawn down to below the level in the discharge column. Wastewater could then travel backwards through the pumps and into the wet well. LRWU staff have suggested the installation of a drain line either into the wet well or into the dry well sump. Suggestions have also been made for installation of a new valve below the return line so that any return flow would not enter the column and header. Maintenance and repair could then be conducted safely.

The LRWU staff would prefer grinders in place of the bar screens. The bar screens are high maintenance compared with grinders.

Procurement of an emergency generator has been suggested by LRWU staff based on the high incidence of power outages and the need for pump station reliability to prevent overflow situations.

The Cantrell Pump Station is equipped with a blower system consisting of a dry well blower and two wet well exhaust blowers (refer to Figures 31 and 32).

Figure 31. East side dry well and wet well blowers.

Figure 32. West side wet well blower.

Jamison Pump Station

Wastewater enters the Jamison Pump Station from the south through a 36 -inch sewer line. A gate valve is located on the influent line to adjust the flow. The flow is then directed into two channels, each with its own gate valve and grinder (refer to Figures 33 and 34). Two Muffin Monster grinders protect the pumps by grinding up solids in the wastewater stream prior to entering the wet well.

Figure 33. Influent structure with operators.

Figure 34. Influent wastewater channels and grinders.
Five submersible pumps are located in the wet well: two small pumps (Pumps 4 and 5) and three larger pumps (Pumps 1 through 3). The pumps discharge to a common manifold, which is located in an open dry well (refer to Figures 36 and 37). The pumps discharge wastewater into a 24 -inch line. The discharge line from each pump has a check valve, a plug valve and a bypass line. The bypass lines are used to drain wastewater from the manifold.

The Jamison Pump Station is equipped with a grease mixer that is operational.

Figure 35. Discharge piping leading from pumps to discharge manifold in dry well.

Figures 36 and 37. Dry well containing discharge manifold.

Condition Assessment

Equipment

The equipment appeared to be in satisfactory operational condition. The Jamison Pump Station has a pig launching port for maintenance of the force main (refer to Figure 38). The port is located outside the structure, and is equipped with an associated pressure gage and air release valve for proper operation.

Figure 38. Pig Launch

Crane

The staff has indicated that the crane is in satisfactory condition (refer to Figure 39). The platform is designed so that equipment can be lifted directly from a loading truck onto the top of the wet well structure.

Figure 39. Crane used at Jamison Pump Station.

Pump Noise

According to the LRWU staff, no excessive vibration has been noticed of late, although they did note that during the first five and one-half years of operation, the pumps had excessive pump vibration. The manufacturer attempted, without success, to resolve the vibration problem. LRWU attributes the cease in vibration problems to a change in hydraulic conditions. No changes were made to the pumps or impellers. No vibration problems have been experienced with any of the pumps over the past year. During the site visit, no unusual pump noises were noticed.

Rust

Signs of rust exist on the discharge manifold (see Figures 40 and 41). The protective coating is deteriorating.

Figures 40 and 41. Rusted area on discharge manifold.

Corrosion (Concrete)

No degradation of the structure was evident. A protective coating has been applied to the walls of the wet well for corrosion protection.

Hydraulic Analysis

Very few overflows are associated with this pump station.

Pump Curves

The pump curves are located in Appendix D.

Flow Tests

As part of a concurrent project, Byrd-Forbes has been contracted with LRWU to perform tests to characterize the flows at the pump station. They will also develop pump curves to demonstrate current pump performance.

Operation and Maintenance

Pumps

The impellers on the large pumps were previously replaced, but now the original impellers are in use. The large pumps for this pump station are oversized. The smaller pumps cannot operate if a larger pump is running. By design, whenever a larger pump starts, power to the two small pumps (Pumps 4 and 5) is disconnected. Pumps of identical capacity get equal run time. The automatic control system is set to operate the pump with the least accumulated run time. The pumps are not throttled and the discharge valves are wide open. The larger pumps were previously throttled, but that is no longer the operational condition.

The Jamison Pump Station is operated based upon water levels in the wet wells, measured by a bubbler-type level instrument. Redundant level instrumentation includes a pressure transducer and a float-type instrument. The pumps can be operated remotely with an AllenBradley SLC $5 / 03$ processor. Radio signals, via Metricom, relay information between the pump station and the Fourche Creek Wastewater Treatment Plant.

Electrical

The switchgear and the motor control center are currently operating properly.

Instrumentation (SCADA)

The SCADA graphics screen for the Jamison Pump Station, found in Appendix D, shows the different pumping scenarios employed at this pump station. Stage 1 calls for one of the small pumps to operate. Stage 2 calls for both small pumps to operate. At Stage 3, the small pumps stop, and one large pump begins to operate. At Stage 4, two large pumps are operating. The three large pumps are all in operation at Stage 5.

Gages

A pressure gauge is located on the discharge manifold (refer to Figure 42). At the time of the visit, the pressure gauge was not working properly.

Figure 42. Pump header pressure gauge.

Valves

The pump valves and isolation valves were operational during the site visit.
There is an air release valve located on the pig launch to remove excess air.

Screens / Grinders

Muffin Monsters are located in the incoming flow chamber and properly operating.

Housekeeping

Nothing noted at this time by LRWU staff.

Maintenance

Nothing noted at this time by LRWU staff.

Miscellaneous

A flow meter had been installed on the discharge manifold in the dry pit, but the meter is not currently operational due to turbulent flow patterns created from improper installation location.

The Jamison Pump Station is the only one of the three visited that has fiberglass grating (refer to Figure 43).

Figure 43. Fiberglass grating over influent and grinders
The Jamison Pump Station is equipped with a wet well exhaust fan (refer to Figure 44).

Figure 44. Wet well exhaust fan.

No backup generator is located on-site and no external hookups exist. LWRU staff is making an effort to procure emergency power capability.

The Jamison Pump Station has the capability to divert flow from the incoming gravity system to an adjacent collection system.

RECOMMENDATIONS

Final recommendations and construction and capital costs for recommended improvements will be presented in the Facility Plan.

MONTGOMERY WATSON

LITTLE MAUMELLE PUMP STATION
Pumps No. 3 and 4

Little Ruck Wastewater Utility Facility Plan
Pump Station Evaluanon

Pump Station: Ma Male
Pinole Valky hoad
Address. \qquad
Description.
\qquad
\qquad
\qquad
\qquad
\qquad

Pump Physical Data

Comments:
Subiners:ble Puny
SMALL Pumps turn off when large pumps turn on.
\qquad
\qquad
Wet Well
Revised on Coff (1988)
Height 40^{\prime}
Length $=22^{\circ}$
widest $40^{\prime} 6^{\prime \prime}$

$$
\begin{aligned}
& 244 \text { - Alarm ON } \\
& 241 \text { - Enable ON } \\
& 239 \text { - Large Level on } \\
& \text { 338 - Sm. } 1 \text { Pimps OFF } \\
& 232 \text { - Small } \mathrm{Lcg} \text { oN } \\
& 231 \text { - Small Ladon } \\
& 230 \text { - All off }
\end{aligned}
$$

Condition Assessment

Pumps

\qquad
 Upsuream Pipe

Downsuream Pipe

\qquad

Meter

\qquad

Valves
\qquad

Wer Well
\qquad

Dry Wch
\qquad

1\&C

Electrical

opher Sewrise Grinder Unils

Other
\qquad

Operation \& Maintenance

Pumps

\qquad

Upstream Pipe
\qquad

Duwnsteam Pipe
\qquad

Meter

\qquad

Valves
\qquad

Wet Well
\qquad

Dry Wcll
\qquad

LK

\qquad

Electrical

\qquad

Other

Other

Current Problems

Equipment

\qquad

Ocher

Field Tesring \& Daca

Existing Data

Photo List

\qquad

HEAD

49.21
 4132.81踥16.4

$\angle A D I N$ FEET

66
49.21
， $32 \cdot 81$
16.4

SYSTEM CURVE DATA FOR LITTLE MAUMELLE PUMP STATION

Force	TDH AT	TDH AT
Main	W. Well	W. Well
(gpm)	Elev. 230	Elev. 242
200	24.6	12.6
400	24.9	12.9
800	25.8	13.8
1,200	27.4	15.4
1,600	29.4	17.4
2,000	32.0	20.0
2,400	35.0	23.0
2,800	38.5	26.5
3,000	40.4	28.4
4,000	51.7	39.7
5,000	65.8	53.8
6,000	82.5	70.5
8,000	123.8	111.8

NOTE: DYNAMIC HEAD LOSS OF FITTINGS INCLUDED; ACTUAL DUCTILE IRON PIPE DIAMETERS USED FOR CALCULATIONS; HAZEN-WILLIAMS COEFFICIENT $=130$

Appendix C

I

 SIZE-MODEL $14-5713$
IMPELLER DES 114 DIM
IMPELLER DIA. 24.38°
RPM(S) 880
HIS CURVE IS BASED ON ACTUAL NO. STAGES ONE
TEST PERFORMANCE OF A SIMILAA PUMP. ONLY THE INDICATED POINT(S) IS GUARANTEED.
NO. STAGES ONE
REFERENCE OWNTEST
PLOTTED BY JCM
DATE $4 / 6 / 92$
MathGumy

Little Ruck Wastewater Utility Facility Plan
Pump Station Evaluanon
Field Inspection Form
Pump Sration:Cantrell
Address: \qquad
Description.
\qquad
\qquad
\qquad
\qquad

Pump Physical Data

Comments.

Wet well (z)
Depth $\approx 53^{\prime} 5^{\prime \prime}$
width ${ }^{\prime \prime} 190^{\prime \prime}$ $3^{\text {th }} \approx 910^{\prime \prime}$
invert $=208$

Condition Assessment

Pumps

Upstreain Pipe
$36^{\prime \prime}$ Extine Stand ed Clay, 39"Renfored Concise

Downstream Pipe
$30^{\prime \prime}$ RIf, Dischusi Election 246

Meter shin

Values
\qquad

War Well

Dry Well
\qquad

IRC

Electrical

Pother Meter, Vault

$$
20 \times 10^{2} \times 17^{4} 08
$$

Other

Operation \& Maintenance

Pumps
\qquad
\qquad
Upstream Pipe
\qquad
\qquad
Duwnuteam Pipe
\qquad
\qquad
Meter
\qquad
\qquad
Valves
\qquad
\qquad
Wer Well

Dry Well
\qquad
\qquad
L\&C
\qquad
\qquad
Electrical
\qquad
\qquad
Other

Other

Current Problems

Equipment

Other

Field Tesring \& Data

Existing Data

Photo List

HIS CURVE IS BASED ON ACTUAL NO. STAGES ONE TEST PERFORMANCE OF A SIMILAR REFERENCE OWNTEST PUMP ONLY THE INDICATED
POINT S) IS GUARANTEED. PLOTTED BY JCM

SIZE-MODEL 14-5713 IMPELLER DES L14D1M IMPELLER DIA. 24.30" RPM(S) 880

MAX. SPHERE-4.8.

1	$1+1$	1
$1+1,1$		

PUMP PERFOF...ANCE CURVE

MRX. SPHERE=4.8*

Purnp Data fiar Caritrell Road P/S at Lititle Rocok Ark.

(1) MONTGOMERY WNATSON

Liule Rukk Wastewater Urility Facility Plan
Pump Station Evaluanon Ficld Inspection form
Yay 0 多ump station: Jamsen \qquad

Address: \qquad
Description.
Description. Submesibh
\qquad
\qquad
\qquad

Commems
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { Wet well - } \\
& \text { He.egh } \approx 40 \text { feet } \\
& \text { length }=30 \text { feet } \\
& w: d t^{h}=20 \text { feet }
\end{aligned}
$$

Condition Assessment

Pumps

Upistean Pipe

Downstream Pipe
\qquad
\qquad
Motcr
\qquad
\qquad
Values \qquad
Wer Well

Dry Wedt
\qquad
\qquad
I\&C
\qquad
\qquad
Electrical
acher_Grinders

Ouher
\qquad
\qquad

Current Problems

Equipment
\qquad

Other

Field Testing \& Data

Existing Data

Photo List

$$
\begin{aligned}
& 1 . \\
& 2 \longrightarrow \\
& 3 \ldots \\
& 4 \\
& 5 \\
& 6 \\
& 7 \\
& 8
\end{aligned}
$$

PRELIMINARY Dated APRIL 1993

The curves reflect maximum performance characteristlcs without exceeding full bad (Nameplate) horso have a service factor of 1.2. Operation is recommended in the bounded area with operational point withinithe curve llmet Perlormarice rluves are based on actual tests with clear water at $70^{\circ} \mathrm{F}$. and 1280 feet site elevation:

LITTLE ROCK WASTEWATER UTILITY

HYDRAULIC MODELING/COLLECTION SYSTEM FACILITY PLAN SECAP SYSTEM EVALUATION AND CAPACITY ASSURANCE PLAN

> LARGE DIAMETER SEWER INVESTIGATION TECHNICAL MEMORANDUM FINAL DRAFT

JUNE 2001

LARGE DIAMETER PIPELINE INVESTIGATION TECHNICAL MEMORANDUM

INTRODUCTION

Background

This Technical Memorandum (TM) is being prepared as part of an overall project entitled "Hydraulic Modeling/Collection System Facility Plan." The Facility Plan will document the analysis of system performance through evaluation of the collection system and pump stations. A modeling effort is also be part of the Facility Plan, and is being undertaken to simulate and predict collection system performance with emphases on capacity, hydraulics, overflows and future growth of the system.

The Little Rock Wastewater Utility (LRWU) Department owns and operates two wastewater treatment plants. Both plants are located in the eastern part of the city, relatively close to where the Arkansas River begins to flow in a southerly direction. The Adams Field Wastewater Treatment Plant has a design flow of 36 million gallons per day (MGD) with a pumping capacity of 72 MGD, while the Fourche Creek Wastewater Treatment Plant has a design flow of 16 MGD with a pumping capacity of 40 MGD . The LRWU also owns and operates the associated collection system and pumping stations

Purpose

This TM focuses on the large diameter sanitary sewer pipelines. The evaluation covered approximately 30,000 linear feet of pipeline ranging from 24 -inch diameter to 60 -inch diameter. The purpose of this TM is to evaluate the general condition, corrosion, and debris sediment characteristics of the pipelines.

This evaluation is limited to the specific pipelines that have been inspected by Closed Circuit Television (CCTV) by LRWU, data supplied by the LRWU, and pipeline information acquired by Sonex, a Montgomery Watson subcontractor. Inspections performed and data acquired for this evaluation include:

- closed circuit television (CCTV) completed in 1998 by LRWU
- sonar investigations of pipeline diameter completed in 2000 by Sonex
- maintenance records and repair work orders from the LRWU
- external condition reports as made available
- mapping (ArcInfo GIS) of large diameter sanitary sewer routes
- geotechnical information along the Riverfront, South and Brodie Creek Interceptors

COLLECTION SYSTEM DESCRIPTION

The LRWU large diameter gravity pipeline segments (those greater than 24 inches in diameter) of the collection system are shown on Figure 1. The figure shows the large diameter sections of the system as interceptors and their relationship with the collection system and the treatment system. Table 1 shows the diameter, length, and inspection information for each sewer segment investigated as well as the results of the various inspections.

LARGE DIAMETER PIPELINE INVESTIGATION
 TECHNICAL MEMORANDUM

Sanitary flow travels generally from the west to the east, similar to the flow direction of the Arkansas River. The collection system flows into two wastewater treatment plants on the eastern end of the city. The Riverfront Interceptor, serving the northern part of Little Rock, follows the general south bank of the Arkansas River and discharges into the Adams Field Wastewater Treatment Plant. Sanitary flows from the southern part of Little Rock travel from a number of interceptors to the North and South Interceptors, and ultimately to the Fourche Creek Wastewater Treatment Plant.

METHODOLOGY AND APPROACH

Definitions of terminology, and a succinct classification system, are important in evaluations of this type. Adjectives and designations with similar meanings are often used interchangeably when discussing pipelines. Findings, as presented herein, have been categorized into types as follows:

Defects
Pipeline defects or conditions showing damage to the pipeline or structures. A glossary section has been developed and included in this Technical Memorandum as Appendix A - Definition of Terms.
Features
Include connections, bends and other features constructed in the pipeline.
External Conditions
Include groundwater, surface development and foundation conditions.
The measurement of the structural condition of a sanitary sewer that has been constructed underground is a challenge, and the conclusions are by necessity conservative. Most sanitary sewers possess structural defects after years of service. The service life of sewers is influenced by many factors, including but not limited to: soil movement, soil migration, groundwater levels and fluctuations, internal surcharges, foundation conditions, overhead vegetation, placement during installation, and surface loads. Many of these factors that can deteriorate sanitary sewers are not evident from either internal or surface inspections.

Defects may or may not cause a sanitary sewer to fail. Catastrophic failure is rare, but very damaging when it occurs. Structural failure has generally not been shown to be a good predictor of catastrophic failure. Often sewers with structural failures have exhibited good service life beyond the identification of the structural failure.

This investigation relies on a collection of defect information, feature information and external conditions information. Defects are descriptions of damage to the integrity of the interior of the pipeline. Features are conditions within the pipeline, and external conditions are those conditions external to the pipeline. Examples of a defect are a cracked pipe. Features may include bends or connections which can change the velocity of flow and increase debris amounts. External conditions may include pipe foundation, groundwater and surface features.

Data were gathered for this investigation from previous CCTV studies conducted by the LRWU and a sonar investigation (Sonex) conducted by a Montgomery Watson

LARGE DIAMETER PIPELINE INVESTIGATION
 TECHNICAL MEMORANDUM

subcontractor. Data were also obtained from the LWRU relative to GIS system mapping and geotechnical investigations. The CCTV and Sonex investigations provided information with respect to the level of corrosion and extent of debris in the inspected pipelines. The findings of corrosion and debris were summarized in Table 1 by pipeline segment.

Sewer System Maintenance Records

The collected sewer system maintenance records show areas that have required past maintenance or repairs. If an area shows an unusual number of repairs or maintenace activities, that may indicates areas where the construction techniques, pipe material, or external conditions may not be conducive to maintaining long-term sanitary sewer service. These concentrations of activities may suggest areawide solutions to problems identified in these findings. That information will be, reviewed and comparisons made for inclusion in the final Facility Planning Report.

Closed Circuit Television (CCTV) Inspection

CCTV information collected from 1995 through 2000 showing about 48,000 linear feet of large diameter sewer was provided to Montgomery Watson for review and evaluation. In addition to the video tapes, data obtained during the CCTV inspections included information on pipeline segments, manhole designations, plan and televised length, and pipe size and material. The video tapes were recorded by a pan-and-tilt color camera without audio. Generally, pipeline segments were televised from upstream to downstream. Areas inspected with CCTV are shown on Figure 2. Montgomery Watson viewed each video tape, and transcribed video tape information on a specially-prepared Sewer Video Evaluation Form. The forms can be found in Appendix D - Sewer Video Evaluation Forms (bound separately). These forms document not only inspection information, but also Montgomery Watson observations.

For CCTV inspections, corrosion is typically classified using the descriptions below and the visual observation photographs shown in Figure A-1. Because the sewers were not physically inspected, therefore, the pH and penetration descriptions are indications of anticipated conditions and not measured conditions. Corrosion was determined solely on loss of concrete and reinforcing bar exposure based on visual observation using the CCTV video

1. Light Corrosion is characterized by a slightly depressed $\mathrm{pH}(<6.0)$, and a concrete surface that can be penetrated with a sharp instrument under moderate hand pressure with the removal of some concrete material. The original concrete surface is fully recognizable and aggregate may or may not be exposed. Concrete loss ranges from 0 to 0.5 inches.
2. Moderate Corrosion is characterized by some concrete loss with aggregate slightly exposed, but the original concrete surface is still distinguishable. The surface may have a thin covering of pasty material that is easily penetrated. There is generally a depressed wall $\mathrm{pH}(<5.0)$. Concrete loss ranges from 0.5 to 2 inches.

LARGE DIAMETER PIPELINE INVESTIGATION TECHNICAL MEMORANDUM

3. Severe Corrosion is characterized by significant and measurable concrete loss, or by the presence of active corrosion. Aggregate, and occasionally reinforcing steel, are exposed. The original concrete surface is not distinguishable. The surface is covered with soft, pasty corrosion products where active scouring is not present. There is generally a depressed wall $\mathrm{pH}(<0.3)$ indicating active corrosion. Concrete loss ranges is greater than 2 inches.
4. Extreme Corrosion is characterized by corrosion so extensive that the wall of the sewer has been completely corroded and earth can be observed behind the sewer wall. Concrete is physically missing.

Understandably, where there is no corrosion, normal pH ranges (around 6.0) are applicable. A normal concrete surface is defined as that which cannot be penetrated or removed by a sharp instrument under moderate hand pressure. The surface of the concrete may have visible biological growth (slime build) and moisture, but the concrete is normal and the aggregate is not exposed.

Sonar Investigation

As a component of Montgomery Watson's evaluation process, a number of sewers were inspected using sonar. Those areas that were investigated using sonar are shown on Figure 3. The sonar device, and the procedure for operating the device, is described in detail in Appendix B - Sonex Theory and Equipment. The sonar investigation measures the diameter of the pipeline above and below the water level. The measured diameter is compared to the constructed diameter. The differences above water are considered to be a function of corrosion, and the differences below water are considered to be a function of the amount of debris that has accumulated in the pipeline.

Sonar investigations are a valuable tool in the investigation of corrosion. However, understanding the limitations of data supplied solely from sonar investigation is critical when evaluating the data. The sonar investigation measures only the geometric cross section of the conduit. That measurement is then compared to the original design of the pipeline. Average measurements are taken, which suggest an overall corrosion level within the pipeline. Maximum measurements are instantaneous measurements that show either depressions or bulges in the pipe cross section. These can be defects, or they can be constructed variations. An instantaneous larger diameter may be a localized pit or spalling of pipe material, or the increase in diameter could reflect an open joint, lift hole or some other constructed feature not indicative of a defect. An instantaneous decrease in diameter may indicate a blister or deformation, or the decrease could relfect grease or other debris adhered to the pipeline surface indicating a cleaning requirement, but not a structural defect.

LARGE DIAMETER PIPELINE INVESTIGATION TECHNICAL MEMORANDUM

Measuring internal pipeline geometry with sonar or other devices assesses corrosion. The Sonar caliper system is a precise method of measuring pipeline internal diameter and cross section. The precision of the Sonar method is reported to be within 0.25 inches.

Variations in measurements are also a function of the pipeline manufacturing tolerances and the precision of the measurement device. Most of the pipelines evaluated are reinforced concrete pipe. According to ASTM A-76, the allowable manufacturing tolerances are the larger of $3 / 8^{\prime \prime}\left(0.375^{\prime \prime}\right)$ or 1% of the pipe diameter. As an example, manufacture of a $48^{\prime \prime}$ diameter pipeline would be ruled by a tolerance of 1% of the pipe diameter, or $0.48^{\prime \prime}$. The minimum $3 / 8^{\prime \prime}\left(0.375^{\prime \prime}\right)$ tolerance would apply to manufacture of $27^{\prime \prime}$ to $36^{\prime \prime}$ pipe diameters.

Exposure of reinforcing steel is considered severe corrosion. Reinforcing steel is placed in reinforced concrete pipelines at the midpoint of the pipewall thickness for single strands of reinforcing and one inch from the surface for double strands of reinforcing. The depth to reinforcing varies based on pipeline diameter and it ranges from 1.5 inches for 24 inch diameter to 3 inches for 60 inch diameter for single strand reinforcing and 1 inch for double strand reinforcing. 2 inches has been selected as the indicator of severe corrosion for this evaluation.

Sonex provides information for pipeline cross-section based on average measurements and maximum measurements. Average measurements are used for most of the evaluation procedures since the maximum measurements can be influenced by localized dimensional abnormalities conditions such as joints and does not reflect an overall corrosion condition. The maximum results should be reviewed when making structural repairs since they are more indicative of those types of failures.

For purposes of this discussion, the following corrosion classifications and measurements have been used for this evaluation:

$0-$ None	$0.0-0.3$ inches, $<1 \%$ of diameter
$1-$ Light	$0.3-0.8$ inches, $<2 \%$ of diameter
$2-$ Moderate	$0.8-2.0$ inches
$3-$ Severe	>2.0 inches
$4-$ Extreme	Pieces missing

The Sonex data shows a continuous reading of pipeline interior wall profile. The data collector also collects maximum readings and reports those readings for each profile. Interpretation of these different data records was based on the average measurement being the most important for the determination of corrosion since corrosion is generally an average condition.

If the pipeline profile measurements showed more than 10% of the pipeline length had corrosion in any category, the most severe category observed was used in the interpretation of the data.

LARGE DIAMETER PIPELINE INVESTIGATION TECHNICAL MEMORANDUM

The maximum category was determined by counting the occurances of measurements and assigning the category with the majority of the measurements. This is an indication of the maximum condition.

These classifications differ from CCTV observations since the CCTV is a visual estimate based on the observer's experience. The sonar investigation is a measurement of the pipe diameter and is not subjected to the interpretation of visual obsrevations.

The extent of accumulated debris in the pipelines was also measured during the Sonex investigations. The following classifications have been made as a function of the reported depth of debris:

$0-$ None	$0-2$ inches
$1-$ Light	$>2-6$ inches
$2-$ Moderate	$>6-12$ inches
$3-$ Severe	>12 inches
$4-$ Extreme	Blocked

A very limited comparison of pipeline segments investigated by both sonar and CCTV is presented in the following section.

PIPELINE ASSESSMENTS

CCTV and Sonex Evaluation data are made from two different reference points. The CCTV data is collected from a visual reference point that is based on a no corrosion point of zero. The Sonex data is collected from a manufacturing reference point that is based on no corrosion ranging between the assumed pipeline diameter and the allowable manufacturing variations of that pipeline diameter. CCTV observations of corrosion are visual estimates of corrosion depth subject to variations by observer, while the Sonex measurements are direct pipeline measurements. To accommodate for those differences, the following correlation from descriptors to measurements are used in this report

Table 2

Pipeline Assessment Parameters

Corrosion Descriptor	CCTV visual estimates	Sonex measurements
None	0	$0-0.3$ inches
Light	$0.0-0.5$ inches	$0.3-0.8$ inches
Moderate	$0.5-2.0$ inches	$0.8-2.0$ inches
Severe	>2.0 inches	>2.0 inches
Extreme	Pieces missing	Pieces missing

The "None, Light and Moderate" categories have different measurements for their description. The reference point the measurements are taken from causes these differences.

LARGE DIAMETER PIPELINE INVESTIGATION
 TECHNICAL MEMORANDUM

The Severe category is the same in both investigation techniques since it represents sufficient material loss from the pipe wall structure to warrant significant and immediate concern.

This section of the TM presents the findings of the pipeline evaluations. Table 1 , found in Appendix C, is a comprehensive tabulation of the pipeline segments that were televised and/or investigated with sonar. The table is in an EXCEL spreadsheet format and is fully searchable, allowing the LRWU to locate any pipeline segment information based on upstream manhole, downstream manhole, defect, pipe size/diameter or other listed parameter. Table 1 represents a tabulation of all of the data supplied or collected to date. The table permits a thorough review of the data collected for each pipeline segment to allow observation and comparison between the investigation techniques.

The majority of the pipelines that were reviewed showed no apparent defects, corrosion or debris. All pipelines with investigation information are shown on Table 1. Specific defects and their locations are also noted in Table 1. The internal inspection information presented in Table 1 should be reviewed prior to starting new projects and spot repairs. During those construction or repair activities, any defects noted in the tabulation should be assessed and repaired, if appropriate. Only those segments that showed defects, corrosion or debris are discussed further.

Distances shown in Table 1 for the sonar and caliper investigation are based on measurements from the manhole in which the sonar investigation was initiated (the start manhole). The locator column indicates the equation to provide general locations to the defect from the nearest manhole. However, if field location of the defect is required, the full measurement from the start manhole to the defect should be used.

Defects, corrosion and debris information is shown on Figures 4, 5, and 6. Figure 7 shows those pipelines that have undergone inspection by both CCTV and sonar investigation.

CCTV and Sonex Comparison

Five pipeline segments were inspected using both CCTV and sonar investigation techniques. These five segments allow a limited comparison between the two types of inspection techniques. The five pipe segments and the results are shown on Table 3.

LARGE DIAMETER PIPELINE INVESTIGATION TECHNICAL MEMORANDUM

Table 3

CCTV and Sonar Investigation Corrosion Comparison

Pipe Segment	CCTV Result	Sonar Investigation Average Result	Sonar Investigation Maximum Result
6C001-6C004	Light to Moderate	Light	Light to Moderate
13G001-13G003	Light	Light	Light to Moderate
6K108-7K109	None to Light	None	None
8N012-8N004	None	None to Light	None to Moderate
8N010-8N009	None	Light	Light

These comparisons show that four of the five segments received the same general corrosion rating when the CCTV results are compared to the sonar results.

Condition and Typical Recommended Actions

These findings indicate that the large pipe diameter sewers in the Little Rock Wastewater Utility (LRWU) system are generally in good working condition. Segments with noted defects are described in the discussion below. The average and maximum conditions observed, and the actions typically recommended to the utility based on the condition assessment, are presented in Table 3. These recommended actions may be applied to the maintenance and/or repair of each segment evaluated.

Table 4

Recommended Action based on Condition Assessment

Defect Category	CCTV or Average Sonic Condition	Maximum Sonic Condition	Recommendation
Debris	Light	Light	No Action
	Moderate or Severe	Moderate or Severe	Clean, inspect
Corrosion	None	None	No Action
	Light	Light	Reinspect (5-10 years)
	Light	Moderate or Severe	Reinspect (0-5 years)

LARGE DIAMETER PIPELINE INVESTIGATION TECHNICAL MEMORANDUM

	Moderate	Moderate or Severe	Rehab or replace (1-3 years)
	Severe	Severe	Rehab or replace now

Table 5 shows each pipeline segment, its corrosion and/or debris evaluation condition and its recommendation.

APPENDIX A DEFINITION OF TERMS

SEWER DEFECTS - STRUCTURAL

Break Pieces of the sewer conduit are noticeably displaced, differentially, and some pieces could be missing (see Figure A-5). Thus, a hole in the fabric of the sewer is also classified as broken. A broken sewer is the most structurally serious defect. A chipped sewer wall is not coded as broken, but should be entered into the general comments section of the coding sheet as such.

Crack Crack line visible on the sewer wall, with the pieces of the wall still in place (see Figure A-3). The crack may be either longitudinal (i.e., following the longitudinal axis of the sewer) or circumferential (i.e., around the periphery of the sewer). Cracks are not themselves serious defects, but are indicative of the initial stages of sewer deterioration. Multiple cracks are a combination of both longitudinal and circumferential cracks.

Collapse Structural integrity of the sewer conduit has been completely lost and deformation is greater than 10 percent (see Figure A-5). Percentage loss of cross-section is estimated to the nearest 5 percent.

Corrosion The destruction of a cementitious wastewater component and its material properties because of a reaction with its surroundings (the sewage environment). Usually, a defect observable specifically in the soffit, generally above the springings of the sewer conduit, and in the proximity of force main discharges (see Figure A-1).

Corrosion (Reinforcing Steel)

1. Exposed is characterized, as a minimum, as being able to see rib lines in the pipe. This is an indication that the concrete has deteriorated past the steel and that there is only a thin layer of concrete covering the steel. The worst case under this category is that the steel is exposed either slightly or in its entirety and is starting to rust.
2. Corroded is characterized by the steel being exposed and showing signs of corrosion and loss in diameter.
3. Missing is characterized by missing rebar or fully corroded steel.

Deformation A measure of the vertical and horizontal reduction or change in crosssection of a sewer as a result of self-weight or external forces. Three levels of deformation are normally reported. These are:

- 0-5 percent deformation is acceptable, may not need structural upgrading, and normally requires monitoring.
- 5-10 percent deformation requires some form of structural enhancement, possibly a lining;
- $\quad>10$ percent deformation is a collapse condition and the sewer needs replacing.

Note that with brick sewers, some misshapen cross-sections may have been built into the original sewer. Note also that plastic pipes can deform without structural defects.
Normally a built-in deformation of 6 percent is allowable in plastic sewers.
For inspection purposes, deformation is normally recorded to the nearest 5 percent.
Fracture Wall of sewer visibly open along the length and/or circumference of the sewer with the pieces of the sewer wall in place (see Figure A-4). The fracture may be either longitudinal (i.e., following the longitudinal axis of the sewer) or circumferential (i.e., around the periphery of the sewer. The sewer may be seen to suffer from some distortion. The defect is indicative of the secondary stage of sewer deterioration and constitutes a more serious problem than a crack. Multiple fractures are a combination of both longitudinal and circumferential fractures.

Open Joint Adjacent conduit sections are open at the joint (see Figure A-2). Displacements are recorded as a fraction of the wall thickness of the conduit (t) as follows:

- slight $-<\mathrm{t}$;
- medium $-1<\mathrm{t}, 1.5$;
- large-1.5 t.

Joint Displaced Adjacent conduit sections are not concentric at the joint (see Figure A-2). Displacements are recorded as a fraction of the wall thickness of the conduit (t) as follows:

```
- slight - < t;
- medium - 1 < t < 1.5;
- large -> 1.5 t.
```

Surface Damage Surface of sewer conduit is damaged by either spalling, wear, erosion, or any other deleterious mechanism other than corrosion (see Corrosion).

SEWER DEFECTS - SERVICE

Debris Grease, rocks, sand, and silt in a sewer line, excluding items mechanically attached to the line such as intruding service connections, intruding pipe and joint materials. Debris could be the cause of turbulence in the conduit and a reduction in hydraulic capacity. Percentage loss is normally given to the nearest 5 percent.

Debris is normally identified by the following characteristics:

- Debris. Pebbles, wood chippings, brick and other material that could cause turbulence and reduction in hydraulic capacity;
- Silt. Silt mud and other organic (e.g. sludge) and non organic (sand) material;
- Grease. Deposits of grease and similar material at the flow line or soffit within the sewer.

Encrustation Deposits left on the wall or joint of a sewer by the effect of infiltrating groundwater containing dissolved salts. Normally described as being light, medium or heavy, and characterized by loss of percentage cross-sectional area, thus:

- light - > 5 percent;
- medium - $5<$ loss <20 percent;
- heavy >20 percent loss.

Ground Water Infiltration Water entering sewers and manholes via defective joints and connections, broken pipes, fractured manholes, etc., due to the effects of a high ground water table. Various levels of ground water infiltration are identified, namely:

- Seeper The slow ingress of infiltration through sewer/manhole structures, identified by glistening effect of the water under the influence of survey lighting apparatus;
- Dripper Infiltration characteristically dripping into the wastewater system through sewer/ manhole structural defects;
- Runner Infiltration running into the wastewater system through sewer/manhole structural defects;
- Gusher Infiltration entering the wastewater system under hydrostatic pressure via structural defects.

Obstruction An obstruction in the sewer conduit resulting in stoppage of the inspection or survey. Obstructions can be:

- General, e.g., shopping cart;
- Mechanical, e.g., water main;
- Structural, e.g., prop. mechanism;
- Strata, e.g., rock fall.

SEWER DEFECTS - PROTECTIVE LINING

Blister A concentrated swelling of the protective coating over the host conduit.
Bulge A concentrated swelling of the protective liner over the host conduit.
Degradation Break down by biological action of the protective liner, protective coating or host conduit.

Delimitation Separation of internal layers of the protective lining material. Loss of internal bonding - chemical or mechanical.

Detached Extensive separation of the protective lining material or protective coating from the host conduit.

Missing Where the sewer conduit has no protective coating or protective lining, though the sewer conduit is indicated on as-built drawings, or on job files.

Tear When the protective lining has become torn.
Weld Failure The opening up of the weld between adjacent pieces of protective lining due to physical or chemical breakdown.

Wrinkle The incorporation of a longitudinal or circumferential fold, typically in a CIPP lining due to stretching or excessive material. Normally the wrinkle should not exceed more than 1 percent of diameter for protective linings equal to or greater than 24 inches, and more than 2 percent of diameter for protective linings in sewers less than 24 inches.

Surface of pipe damaged by gas, generally hydrogen sulfide (rotten egg smell), arising from septic sewage. Can be associated with trade waste or spillage if gases are corrosive.

The gas combines with condensing water to form a weak sulfuric acid which attackes the cement content of concrete, leaving the aggregate exposed or dropping away. A characteristic of warm/hot climates, slow flows, slack gradients or backfalls or pumped flows where the rising main exits into the gravity sewer.

FIGURE A-1
CORROSION OF CONCRETE

Open Joint, Medium. Adjacent pipes are longitudianlly displaced at the joint.

Joint Displaced, Medium. The spigot of a pipe is not concentric with the socket of the adjacent pipe.

FIGURE A-2

Cracked Circumferential. Crack lines visible on pipe wall, pieces all still in place. Defect runs at approximate right angles to axis of sewer.

Cracked Longitudinal. Crack lines visible on pipe wall, pieces all still in place. Defect runs at approximate right angles to axis of sewer.

Cracked Multiple. Crack lines visible on pipe wall, pieces all still in place. Defect runs at approximate right angles to axis of sewer. Combination of both longitudinal and circumferetial.

Fracture Circumferential. When a crack becomes open on the pipe wall and the pieces are all still in place. The defect runs approximately along the axis of the sewer.

Fracture Longitudinal. When a crack becomes open on the pipe wall and the pieces are all still in place. The defect runs approximately along the axis of the sewer.

Fracture Multiple. When a crack becomes open on the pipe wall and the pieces are all still in place. The defect runs approximately along the axis of the sewer. Combination of both longitudinal and circumferetial (that cannot be easily identified and coded as either one).

FIGURE A-4
FRACTURES

Broken. Pieces of the pipe are noticeably displaced. Some pieces could be missing. A hole in the fabric of the sewer is also classified as "broken." A chipped pipe is not classified as broken.

Collapsed. Complete loss of structural integrity of the pipe. Most of the cross-secional area is lost.

FIGURE A-5
BROKEN AND COLLAPSED PIPES

FIGURE A-6

FIELD OPERATIONS

The SONEX SONIC CALIPER ${ }^{\text {TM }}$ was used to inspect the lines for corrosion loss and debris accumulations. The corrosion was measured with the SONIC CALIPER ${ }^{\text {TM }}$ and debris measured with the Mechanical Caliper ${ }^{\text {TM }}$.

A pull cable was floated to the downstream manhole. The SONAR SYSTEM was inserted at the upstream manhole, pulled downstream and extracted at the downstream manhole.

SONIC CALIPER ${ }^{\text {TM }}$ THEORY

Sound travels at a uniform velocity within any specific medium. This property is the basis for all sonic and ultrasonic distance-measuring systems from marine navigation to medical imaging. A sonic pulse is transmitted toward a target. The travel time for the echo is measured and multiplied by the known sonic velocity to determine the round-trip distance to the target.

Sonic transducers are used to transmit and receive the sonic pulses. These are piezoelectric devices that convert mechanical energy to electrical energy and vice versa. The most familiar sonic transducer may be the sportsman's fish finder transducer.

The SONEX SONIC CALIPER ${ }^{\mathrm{TM}}$ has a single, rotating, transducer. This transducer protrudes from the end of a tube containing circuitry that generates and receives the sonic pulses, rotating motor, slip rings that convey the pulse to and from the transducer, and batteries that power the unit. The rotating transducer takes fifty distance measurements during each rotation. The rotation speed is 36 RPM.

The float- or skid-mounted Sonar System is inserted through the manhole and floated or pulled through the pipe to the next manhole. The unit is connected to a computer in the instrument van by a four- or seven-conductor steel cable. A cable meter records the distance from the manhole to the tool. Caliper electronics pulse the transducer fifty times per rotation. The tool is pulled at a speed that allows for One rotation for every foot of pipe inspected.

Travel times for each set of fifty sonic readings are stored in the computer, shown on the monitor, and used to draw a pipe cross section for each data station. The cable meter footage is also shown.

One time count, in air equals about 0.027 inches and in water, about 0.029 inches. The system can resolve the distance to within two counts, so the practical resolution of the SONIC CALIPER ${ }^{\mathrm{TM}}$ is better than 0.054 and 0.058 in air and water respectively. Accuracy depends on the determination of the sonic velocity, determination of the position of the tool in the pipe, and the amount of turbulence that might disturb the position of the tool.

SONIC CALIPER ${ }^{\text {TM }}$ EQUIPMENT

The SONIC CALIPER ${ }^{\mathrm{TM}}$ used to inspect the pipelines for the L.R.W.U. measures the inside circumference of the pipe using sonic-ranging distance measurement. Sonic pulses emitted from a rotating transducer are echoed back to the transducer from the wall of the pipe or the top of the debris. Distance is calculated using the elapsed travel time and the determined velocity of sound through the air (or water) at the time of the inspection.

The SONAR SYSTEM can send pulses through air to inspect the pipe above the flow, or through water to inspect the underwater portion of the pipe. The power levels and signal amplification must be changed to go from air to water so it is not practical to run both air and water at the same time.

The SONAR SYSTEM has a single, continuously rotating transducer. Fifty distance readings are taken for each rotation, and can be taken over any arc of the 360-degree rotation.

The tool was drawn through the line at a speed that allowed for roughly one rotation for every foot of pipe inspected. Sonic-distance readings were used to draw cross sections of the pipe during the inspection; and were stored on disk and hard drive for analysis and presentation after the fieldwork was complete.

The SONIC CALIPER ${ }^{\text {TM }}$ can resolve distances to within less than 0.06 inches. Absolute accuracy depends upon calibration, and the stability of the tool in the pipe. Occasionally factors such as turbulence, splash, alignment and other line conditions
may interfere with a rotational scan of the pipe. Where this occurs these scans may be omitted from the view programs, noticeable as generally brief blank sections.

Interceptor Designation	Interceptor Reach Manhole Designation		Pipe intormation			CCTV Inspection Data															Sonic Observation Data						Extemal Condillons		
Brodie	${ }^{\text {Usstream }}$	Oonsstream 30002	(iamerer	Maletial CPA			\|cciv Tep \#	Line Segment		${ }_{\text {ACT Key }}{ }_{1246}$	ACT Desc.	${ }_{1}^{\text {Wono }}$		$\substack{\text { Reterence } \\ \text { Foolse }}$	Delect	Corrosion	Fiow Deph	Feaure	Debis	$\underset{\text { Velocily }}{\text { Smoln }}$	Locator	$\underbrace{\text { cen }}_{\substack{\text { Relerence } \\ \text { Footage }}}$	Corossion Averase	${ }_{\substack{\text { Corrosion } \\ \text { Max }}}^{\text {ata }}$	${ }_{\text {c }}^{\text {Denis }}$ Averase	$\underbrace{\text { Max }}_{\text {Debis }}$	Geolech	Surace	$\left.\right\|_{\text {around }} ^{\text {waler }}$
Brode	20001	${ }^{30002}$					M144	1		${ }_{1246}$	Houine	153273	8/699							Smoath									
- Brodie	${ }^{20001}$	${ }^{30002}$	${ }^{42}$	${ }_{\text {CPA }}^{\text {CPA }}$			${ }_{\text {M M } 144}$										025												
为Brode Brocie	${ }^{30002}$	${ }^{300001}$	42	${ }_{\text {CPa }}^{\text {CPR }}$	261	700	${ }_{\text {M144 }}^{\text {M144 }}$	2	268.3	${ }^{1248}$	Invesigation	153274	816169							Smooth									
- Brodie		${ }^{3 \mathrm{3NOO}} 3$	${ }^{42}$	${ }_{\text {CPA }}^{\text {CPA }}$	${ }^{840}$	955	${ }_{\text {M }}^{\text {M144 }}$	3	${ }^{850.6}$	${ }^{1248}$	Investigation	153275	81699							Smooth									
	3 NOO 4	W00s															0.25												
${ }^{\text {Bradice }}$	${ }_{3}^{3 N 004}$ 3N005	${ }_{\text {a }}^{\text {anoos }}$	${ }^{42}$	${ }_{\text {CPR }}$	${ }^{485}$	1638	M144	4	${ }^{495}$	${ }^{1248}$	Investiation	153340	817799							Smooth									
Brodie	${ }^{\text {3nvos }}$	Апоя9												499				${ }^{\text {Ondinction }}$											
Brode	${ }^{\text {3N005 }}$	${ }^{4} 408089$	${ }^{42}$	CPR	781	2091	M144	5	794.4	1248	Invesitation	153341	81779				0.25		M										
$\frac{\text { Brodie }}{\text { Brodie }}$	$\frac{4 \text { N099 }}{\text { 4N014 }}$	${ }_{4}^{4 \times \mathrm{NOO} 14}$	${ }^{42}$	${ }^{\text {CPA }}$	683	2772	M144	6	6903	${ }^{1248}$	Investigation	153842	817739				0.25			Smooth									
Brodie	4 NO 14	$4 \mathrm{M016}$																Cnsation											
$\frac{\text { Bradie }}{\text { Brodie }}$	${ }^{4 \times 014}$	${ }_{4}^{4 \times 016}$	42	${ }^{\text {CPR }}$	688	3361	${ }^{1} 144$	7	735.7	1248	Invesitagion	153843	817799		(3Joint Leak)		0.25	(2Join Leak)		Smooth									
Brodie	${ }_{4} 4 \times 016$	$4 \mathrm{AmO15}$	42	${ }^{\text {CPA }}$	${ }^{741}$	3880	M144	8	754.9	${ }^{1248}$	Investigation	153396	ย18ว9				0.25			smoin									
${ }_{\text {Brode }}^{\text {Brodie }}$	${ }_{4}^{4 \times 014}$	${ }_{4}^{4 \times 013}$	${ }^{42}$	CPR	${ }^{317}$																								
South 60	51051	50.50				439	${ }_{194}$	9	3329	${ }^{1248}$	Investigation	${ }^{153397}$	81899				0.30	Cnston ip pe wall		Smooth									
$\frac{\text { South } 60}{\text { Soult } 60}$	${ }_{5051}^{5059}$	51050 51053	${ }^{48}$	CPB	${ }^{645}$	${ }^{4651}$	M_{144}	10	${ }^{644}$	${ }^{1248}$	Investigation	153730	82699				0.30			Smooh									
South 60	${ }_{\text {S059 }}^{5059}$	${ }_{\text {SL053 }}$												215		L													
$\frac{\text { Sounh }}{\text { Sout } 60}$	${ }_{5}^{5059} 5$	${ }^{\text {SLOS53 }}$ 50.052	${ }^{48}$	CPA	${ }^{208}$	527	M144	11	2094	${ }^{1248}$	Investigation	${ }^{15733}$	82699				0.40			Smooth									
Soun 60		${ }_{50} 5052$												${ }^{248}$	Conneclion Submerged				M										
South 60 Notrt 60	${ }_{\text {Sto53 }}{ }_{\text {10.009 }}$	S0502	48	${ }^{\text {CPR }}$	${ }^{656}$	5452	M_{144}	12	656	Cannol	coate into						0.40			Smooth									
Norn 60 North 60	${ }_{\text {10009 }}^{10}$	${ }_{\text {10, }}^{10008}$	48	${ }^{\text {CPF }}$	594	5642	M144	13	603.7	1248	Investigation	154035	830099				0.30	$\begin{aligned} & \text { Light Rools at } \\ & \text { Many Joints } \end{aligned}$		Quiescent									
${ }_{\text {Natht }}$	9KKog	${ }^{960008}$												0				Uning coatedel)											
	${ }_{\text {9K009 }}$	${ }_{\text {gkKos }}^{\text {9k0 }}$												${ }_{3}^{315}$	Crack 2 jomis			Cracke2joins											
Noath 60	${ }_{\text {gKoos }}^{\text {gKog }}$	${ }_{\text {9KKOOB }}^{\text {9K0 }}$												573				${ }_{\text {Scoling }}$											
Notht 60	${ }_{\text {OK00 }}$	${ }_{\text {9K00\% }}$	48	CPA	${ }^{581}$	0	${ }_{146}$	1		Canool L	cate into					M				Oviessent									
$\xrightarrow{\text { North }}$ Nor ${ }^{\text {North }}$	${ }_{\text {OKKOO }}^{\text {OKOO }}$	${ }_{\text {9K007 }}^{90012}$	48	CPA	${ }^{468}$	${ }^{735}$	${ }^{1} 146$	2	4664	${ }^{1248}$	Invesilgation	${ }^{154317}$	${ }^{83199}$																
North ${ }^{\text {N }}$	${ }_{\text {9K007 }}^{\text {grooz }}$	${ }_{9}^{9.012}$												${ }_{2}^{264}$		M													
														${ }_{663}^{46}$															
North 60 North 60	${ }_{\text {9K007 }}^{\text {SK007 }}$	${ }_{9}^{90012}$													$\begin{aligned} & \text { Joint leak at (?) } \\ & 9 \text { o'clock } \end{aligned}$			$\begin{aligned} & \text { Joint ieak al (?) } \\ & 9 \text { o'clock } \\ & \hline \end{aligned}$											
North 60	9.012	$\frac{9011}{90011}$	48	CPR	663	1236	M146	3	670.8	1248	Investigation	${ }^{154318}$	8/31199			M	0.40												
$\frac{\text { North } 60}{\text { Eabsamen }}$	${ }_{7}^{\text {900027 }}$	${ }_{7}^{\text {920006 }}$	${ }^{48}$	CPB	${ }^{356}$	1915	${ }_{146}$	4	356.5	1248	Investigation	1563319	83199			M	0.40	Oviescent											
Rebsamen	${ }_{7}^{7} 720007$	76006 70006	${ }^{42}$	CPB	${ }^{393}$	2227	M146	5	3859	${ }^{1248}$	Investigation	154421	91/99	360				Ripht bend											
Rebsamen	${ }_{7} 70006$	${ }_{7} 7$ Cocos 5														,	0.20												
$\xrightarrow{\text { Rebsamen }}$ Rebsamen	70006 70005	${ }_{7}^{70005}$	42	${ }^{\text {CPR }}$	${ }^{329}$	2658	M146	6	3477	${ }^{1248}$	Investigation	154422	9(179																
Rebsamen	${ }_{7}^{7} 70005$	${ }^{7} 70008$												${ }^{74}$		\llcorner		Wall corrosion; break in crown color; patchy											
Rebsamen	\%76005 OMOS6	${ }_{\text {comos }}$	42	CPR	565	2964	M146	7	5612	${ }^{1248}$	Investigation	${ }_{154423}$	9/1799																
Brodie	OMos6	OM055												${ }_{\substack{80 \\ 105}}$	3 h hoses.ight			$3 \mathrm{Smolos.right}$											
Brodie Brodie	OM056	${ }^{\text {OMOS55 }}$																											
$\frac{\text { Brodie }}{\text { Brodie }}$	OMOS6	OMOS5	24	CPR	194	3278	${ }^{M 146}$	8	194.4	${ }^{1248}$	Investigation	154478	97299	190		\cdots	Low	Oostruction	M	Fast									
$\frac{\text { Bradie }}{\text { Brodie }}$	${ }^{\text {OMMos5 }}$	OMO54												10				Debis											
${ }^{\text {Brodie }}$	OM055	OMOS4												${ }_{80}^{89}$				Oebis	L										
$\frac{\text { Brode }}{\text { Brode }}$	OMO55	${ }^{\text {OMOS54 }}$	${ }^{24}$	${ }_{\text {CPA }}$	${ }^{168}$	3393	${ }^{\text {M } 146}$	9	172.6	1248	Investigation	${ }_{15479}$	9/2999					jump											
Brode	OM054	Om053												19					M										
Erodie	OM054	ом053												76				Comection and											
${ }_{\text {Brode }}^{\text {Brodie }}$	OM054	OMM053												79				sime Comection											
$\frac{\text { Erade }}{\substack{\text { Brode }}}$	OM554	OMOS33			,									83 179				${ }_{\text {Sompenection }}$											
$\frac{\text { Brode }}{\text { Brodie }}$	${ }_{\text {OMOS4 }}^{\text {OMOS4 }}$	OMOS3												$\stackrel{182}{184}$				Commecion											

Table TME-1: Large Diameter Pipeline Investigation Condition Database Table

$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Interceptor } \\ \text { Designation } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Interceptor Reach } \\ \text { Manhole } \\ \text { Designation } \end{array}$		Pipe Intormation			ccTV Inspection Data															Sonic Observation Data						Extermal Condilions		
	Usiream	Ooonstrean	(iameter	Malerial	${ }_{\text {cent }}^{\text {Lengh in }}$	$\underbrace{\text { a }}_{\substack{\text { Reference } \\ \text { Footage }}}$	CCTV Tape \#	Line Segment	Teicevised	АСт Key	ACT Desc.	WONO	Date	$\underbrace{}_{\substack{\text { Releferce } \\ \text { Foctage }}}$	Defect	Corosion	Flow Depth	Feaure	Debis	Velocity	Localor	Reterence	${ }^{\text {Corasaion }}$	Corrasion	Debris	Debis	Geotech	Surace	
${ }^{\text {Brodie }}$	${ }^{\text {OMOS54 }}$	OMMO53												254				Jump						Max		Max	Geolech	Surace	
Brode	${ }^{\text {OMO54 }}$	OM053												${ }_{328}^{268}$															
${ }_{\text {Brode }}$ Brode	OM054	OM053												${ }_{3}{ }^{32}$				Comnection											
Brode	OM054	OM053												${ }_{466}^{468}$				Commection											
Brodie	OMOS4	OMos3												5				${ }^{\text {coomacion }}$	M										
$\frac{\text { Bradie }}{\text { Brosie }}$	OMO54	OM053												${ }_{5}^{573.560}$				${ }_{\text {jump }}^{\text {Jobis }}$											
$\frac{\text { Brooie }}{\text { Brode }}$	OMos3	OMMO53	24	CPR	605	3535	${ }^{146}$	10	598.9	${ }^{1248}$	Investigation	154480	9299			1			M										
$\frac{\text { Brodie }}{\text { Brofie }}$	OM053	OM052	${ }^{24}$	${ }_{\text {CPB }}$	485	4029	M146	11	462.9	${ }^{1248}$	Investigation	154481	99299																
Stadie	OM052	ON0292	${ }^{24}$	CPR	214	4470	M146	12	24.97	${ }^{1248}$	Invesigation	154482	9/299																
$\frac{\text { Bradie }}{\text { Brodie }}$	- ${ }_{\text {ONOO3 }}$	${ }_{\text {ONOO2 }}$	36	CPB	593	4685	${ }^{1} 146$	13	596.3	${ }^{1248}$	Investigation	156483	97199																
$\frac{\text { Brode }}{\text { Breme }}$	${ }^{\text {ON002 }}$	${ }^{\text {OnNoOI }}$	${ }^{36}$	${ }^{\text {CPA }}$	721	5187	M146	14	720.5	${ }^{1248}$	Investigation	${ }^{154584}$	97799																
Brodie	ON001	${ }^{\text {in }}$ (1024 ${ }^{\text {ine24 }}$	${ }^{36}$	CPR		5394			5719		Investagaton	159584	9m99																
${ }^{\text {Bradie }}$	${ }^{\text {in }}$ - ${ }^{\text {a }}$	${ }^{1} 1023$	36	CFA		539	M146	15	57.9	${ }^{1248}$	Investigation	${ }^{154585}$	97199																
Alebsamen	80096	${ }_{80006}$	5	C	${ }_{5} 54$	5745	M146	16	529.1	${ }^{1248}$	Investigation	154596	97799																
	${ }^{880096}{ }^{80096}$	${ }^{\text {80006 }}$ 80068												234		S													
W	${ }^{880996} 8$	- ${ }_{\text {80006 }}$	${ }^{42}$	CPR	513	0	${ }^{\text {M147 }}$							${ }_{445}^{413}$		M													
	-		${ }^{2}$		S13	0	M147	1	426.4	${ }^{1248}$	Investigation	154619	91899				0.20			Smooth									
	${ }_{8}^{80004}$													${ }_{50}$		L													
 		${ }^{80003}$	${ }^{42}$	${ }^{\text {CPR }}$	693	1006	M147	2	6962	1248	Invesioation	${ }_{15422}$	9/899			s		noebis	\llcorner										
	80003	${ }_{\text {80002 }}$									invesigation		9099				0.20			Smooth									
\square	(10003 ${ }_{\text {B0003 }}$	80022 80002	${ }^{42}$	CPR	545	2112	M147							${ }_{549}$		L													
	(96002	${ }^{\text {950033 }}$				2496	${ }_{M} 147$	3	551	1248	Investigation	${ }^{154671}$	${ }_{97999}$				020			Smooth									
\square		${ }^{\text {coeas }}$	${ }^{42}$	CPA	407	2496	M147	4	407.9	${ }^{1248}$	Investigation	154672	9999	50		1	0.30			Smooth									
	-	$\underset{\substack { \text { 93012 } \\ \begin{subarray}{c}{93012{ \text { 93012 } \\ \begin{subarray} { c } { 9 3 0 1 2 } } \\{9031}\end{subarray}}{ }$												${ }^{130}$				(2)abirs	L										
苞	${ }_{\text {96543 }}$	${ }_{93012}$												${ }_{3}^{335}$				(n) 0 ebis	L										
	-	${ }_{\substack{\text { 93012 } \\ 96019}}^{\text {ciole }}$	${ }^{42}$	CPR	419	2844	${ }_{147}$	5	418.7	${ }^{1248}$	Invesilgation	${ }_{156673}$	9999				0.30	(1)0ebis		Smooth									
\square	¢		${ }^{42}$	CPA	815	3220	M147	6	826.3	${ }^{1248}$	Investigation	154674	9999	50		1	020			Smooth									
	- ${ }_{\text {96019 }}^{\text {gFor11 }}$	${ }_{\text {9FF009 }}^{\text {gFoc }}$	${ }^{42}$	CPR	${ }^{409}$	3619	M147	7	450.5	${ }^{1248}$	Investigation	154751	9/1399	50		\llcorner	0.30			Smooth									
	${ }_{\substack{\text { 9F011 } \\ \text { 9F009 }}}$	${ }_{\text {9FFoo9 }}^{9}$	${ }^{42}$	CPR	329	3986	M147	8	${ }^{2936}$	${ }^{1248}$	Investigation	157752	91399	so		\llcorner	020			Smoolh									
\square	${ }^{\text {9FF009 }}$ 9F012		${ }^{42}$	CPA	30	4276	M147	9	31.3	${ }^{1248}$	Investigation	${ }^{154753}$	91399	0		\llcorner	0.20			Smooth									
	- ${ }_{\text {9F612 }}^{\text {9F012 }}$	${ }_{\text {SFOO13 }}^{\text {9F013 }}$	${ }^{42}$	${ }^{\text {CPA }}$	${ }^{674}$	4335								442				(f) ${ }^{\text {a }}$ ebis	L										
 	${ }^{\text {9FF013 }}$		2		\ldots	4335	M14	10	6673	${ }^{1248}$	Investigation	154754	91399	50		L	020			Smoolh									
														$\stackrel{0}{100}$		$\stackrel{L}{L}$	${ }_{0}^{0.25}$			${ }_{\text {Smooth }}$									
														1988 177	${ }_{\text {coun Shor }}^{\text {SAG }}$			${ }_{\text {cram Shor }}$		Owescent									
\square	${ }_{96013}$	${ }_{9} 9$												190	${ }_{\text {SAG }}$			70\%\% tull											
	${ }^{\text {9FF013 }}$	${ }_{\substack{\text { 9FF016 } \\ 9 F 018}}$	${ }^{42}$	${ }^{\text {CPB }}$	262	4887	M147	11	2626	${ }^{1248}$	Invesigation	${ }^{154755}$	9/1339	220	SAG			80\%\% tul											
	${ }_{\text {9FP016 }}^{\text {9F016 }}$	${ }_{\text {9FFO18 }}^{\text {9FO }}$												${ }^{50}$		L	0.70												
	${ }_{\text {gFol6 }}^{\text {9F0.6 }}$	${ }_{\text {9F018 }}$												107 220	${ }_{\text {SAG }}^{\text {SAG }}$			80\% tuil		Ouiescent									
	${ }^{\text {9FF016 }}$	${ }_{\text {SFOO22 }}$	${ }^{42}$	${ }^{\text {CPR }}$	${ }^{288}$	5067	${ }^{147}$	12	${ }^{287.3}$	${ }^{1248}$	Investigation	${ }^{157756}$	9/1399																
	${ }^{\text {9FF018 }}$ 9F018	${ }_{\text {9FFO22 }}^{9022}$												530															
	${ }^{96018}$	${ }^{9 F 622}$												748 781	${ }_{\text {SAG }}$			$\frac{108 \text { atul }}{\text { Crown view }}$											
	${ }_{\text {9F018 }}^{\text {9F018 }}$	${ }_{\text {9FFor2 }}$												830						Tutuven									
-			42	${ }^{\text {cpa }}$	${ }^{83}$	5234	${ }_{1} 147$	13	${ }^{841.6}$	${ }^{1248}$	Investigation	154770	9/4493	50		1	020												
		${ }^{80} 8094$												$\stackrel{200}{243}$		1													
	${ }^{8 C 002}$	80094												${ }_{315}^{243}$					\llcorner										
	${ }_{8}^{80002}$	${ }_{80}^{80094}$	${ }^{42}$	${ }^{\text {CPA }}$	${ }^{423}$	0	${ }^{1} 148$	1	4267	1248	Investigation	154793	9/1499			$\stackrel{M}{L}$	0.20			Smm									

Interceptor Designation	$\begin{gathered} \text { Intercep } \\ \text { Ma } \\ \text { Desig } \end{gathered}$	tor Reach hole nation		Intoma				CCTV Inspe	ction Data													Sonic	Observat	ion Data			Exte	mal Cond	ditions
	Usprream	Oounstrear	Diamele!	Malenial	${ }_{\substack{\text { Length in } \\ \text { loat }}}^{\text {a }}$	${ }_{\substack{\text { Reielence } \\ \text { Foolase }}}^{\text {cele }}$	CcTV Tape \#	Lne Segment	Televised	Аст Key	${ }^{\text {ACT Desc. }}$	wono	Dale		Delect	Corrosion	Fow Deplt	Feature	Debis	velocity	Loatar		$\left\lvert\, \begin{gathered}\text { Corosion } \\ \text { Averase }\end{gathered}\right.$		Cobis	${ }_{\text {dex }}^{\substack{\text { Debisis } \\ \text { Max }}}$	Geolech	Surace	${ }_{\text {cole }}^{\text {Ground }}$ wader
	${ }_{8}^{80094}$	${ }^{80096}$	${ }^{42}$	${ }_{\text {CPA }}$	91	${ }^{738}$								${ }_{84}$				Bend									Geolach		
	-	- ${ }_{\text {80006 }}$	42	${ }^{\text {CPA }}$	91		M148	2	${ }^{84,6}$	1248	Investigation	154794	914199			1	020			Smooin									
	${ }^{66 \text { coos }}$	78007 7007												${ }^{32}$				$\pm \begin{aligned} & \text { Shiny wall } \\ & \text { Deoris(2) }\end{aligned}$											
	${ }_{6}^{6 C 005}$	${ }^{7} 70007$												${ }^{465}$				Debisis()	L										
	6 ccoss	70007												${ }_{690} 5$		$\stackrel{M}{M}$		Corosion											
	${ }_{6}^{6 C 0055}$													700		M		Corosion											
	${ }_{6}^{6 C 005}$	${ }_{6}^{7 \text { cocol }}$	42	${ }^{\text {CPA }}$	1056	1018	M_{148}	3	10722	${ }^{1246}$	Rooute	${ }^{83533}$	82396			M	0.20			Smooth									
	- 6 C0002	${ }^{600033}$												${ }^{63}$		5		Pibse)											
	${ }_{6}^{6 C 002}$	${ }_{60003}$	36	CPR	${ }^{8}$	2114	${ }_{1148}$	4	4.9	1248	Investipation	156854	9/1599			S	0.25	Pitss(2): caleed()		Tutuvent									
	${ }^{66002}$	${ }_{6}^{60009}{ }^{604}$																			60001+333-8		.	.	.				
	6 CCO 3	6 c004												${ }^{186}$					L										
	${ }_{\text {6c003 }}$	${ }_{660004}^{68}$																${ }^{\text {Severala }}$ (tops-	1										
	${ }_{60603}$	${ }_{60004}$	${ }^{36}$	CPR	497	2127	M148	5	507.4	${ }^{1246}$	Rovine	${ }^{83521}$	88296			1	020			Smooth	6 C001+393								
	${ }_{6}^{660003}$	${ }_{6}^{600044}$																			${ }_{6 c} 6$ colt +393	${ }_{4} 4093484840$	L	M	L	M			
		66004 60004												兂								${ }_{\substack{4840.499 .5 \\ 499.529 .5}}$	L	M	L	L			
	${ }_{6} 6 \mathbf{C O O} 0^{3}$	66004																			$\frac{6 \text { coiol }+393}{60001+393}$	529.5.54.2 5592.6039	L	M					
	66003 6003	${ }_{6}^{6 \text { ccocos }}$																			6 coolt 393	6994.664 .1	L	L	L				
	${ }_{\text {6COO3 }}{ }_{6}$	${ }^{66 C 004}$																			${ }_{\text {cheol }}^{6 \text { cocol }+393}$		L	L	L	L			
	${ }_{6}^{66003} 8$	¢ 60004 60004												-							$\frac{6 C 0001+333}{6 C 001+393}$	${ }_{\text {784, }}^{78989898.8}$			L	M			
	${ }_{6} 60003$	66004																			$\frac{6 \text { ccool }+333}{60001+393}$		L	M	L	M			
	${ }_{6} 60004$	${ }_{6}^{60005}$												175		M													
	${ }^{6} \mathbf{C 0 0 4}$	6 coos												${ }_{435}^{646}$				Oebiss(\%)	L										
	6 c00 4	6 coos																$\begin{aligned} & \text { Drop in invert; llow } \\ & \text { turbulenl; no } \end{aligned}$											
	${ }_{6}^{66004} 48001$	${ }_{6}^{66005}$	${ }^{36}$	CPB	647	2803	${ }^{148}$	6	649.6	1248	Invesitigation	154856	91539			1	020			Smooth									
	${ }_{48001}^{48002}$	${ }^{480002}$	30	CPA	330	3371	M148	7	3363	1248	Invesiligation	${ }^{154893}$	9/693			M	0.50			Smooh									
	${ }_{\text {4 }}^{48002}$	${ }^{48003}$												100	Rebar-fibs														
		${ }^{\text {48003 }}$												${ }_{3}^{2975}$. 0.40												
	${ }_{4}^{48002}$	${ }_{40003}$	30	${ }^{\text {CPR }}$	${ }_{647}$	3574	M148	8	65.6	${ }^{1246}$	Rovine	77710	11/295	647		M	0.50	sick inven dopop											
	${ }_{4}^{48003}$	${ }_{4}^{48004}$	30	${ }^{\text {CPR }}$	299	4004	M148	9	299.9	${ }^{1248}$	Investigation	154895	9/1699			M	025												
	${ }_{4}^{48004} 4$	${ }_{48005}^{4805}$	30	${ }_{\text {CPA }}$	${ }^{336}$	4238	M_{148}	10	${ }^{342.1}$	${ }^{1248}$	Investioation	154896								Smoom									
	${ }^{4} 48005$	${ }_{48006}$															025			Smoolh									
	${ }_{4}^{48005}$	${ }_{48006}^{4081}$	30	${ }^{\text {CPA }}$	467	4447	${ }^{1} 148$	11	477.7	${ }^{1248}$	Invesigation	154897	91699	${ }_{668}$		M	020	NH box brick(${ }^{\text {a }}$		Smooth									
	48006 4 400041	${ }_{4}^{46041}$	30	${ }^{\text {CPR }}$	${ }^{383}$	4761	M148	12	385.1	1248	Investigation	${ }^{155184}$	920099			M	0.20			Smooth									
		${ }_{\text {Scoor }}$	30	${ }^{\text {CPA }}$	278	4987	M 148	13	282.6	1246	Rouline	7776	112395			M	0.25			Smooh									
		${ }_{5 C 002}{ }^{5 C 0}$	30	CPR	107	5141	${ }^{1488}$	14	106.7	${ }^{1248}$	Invesigation	${ }^{155186}$	922099			M	025			Smooth									
	${ }_{5}^{5 c 002}$	${ }_{5}^{56003}$	30	${ }^{\text {CPR }}$	${ }^{409}$	5226	M148	15	${ }^{412.1}$	1248	Investigation	155187	${ }^{920099}$			M	0.20												
		${ }_{\text {Scoos }}^{\text {Scos }}$	30	${ }^{\text {CPR }}$	${ }^{496}$	5472	M148																						
	56004	${ }^{5} 50005$			496	5472	M148	16	500.9	${ }^{1248}$	Investigation	${ }^{155188}$	920999			M	020			Smooth									
	$5 \mathrm{COO4}$	5coos												504				Hinedicoatede											
	5coo4	${ }_{5}^{50005}$	30	${ }^{\text {CPR }}$	504	5732	${ }^{148}$	17	4996	1248	Investigation	155189	92099			M	020	Ainedcoateorn		Smoom									
										\square				407				$\underbrace{\text { area }}_{\text {Nost corroion }}$											
	5c005	5c006 ${ }^{50001}$	30	${ }^{\text {CPB }}$	728	0	M149	1	732	${ }^{1246}$	Rouline	80270	11/695			M	0.15			Smooth									
	${ }_{50006}$	6 coon												50															
	6 6000 1	$6 \mathrm{COO2}$					M49	2	520.7	${ }_{1246}$	Rovine	80275	11/695			M	0.15			Smooth									
	-6c001	${ }_{6}^{600022}$	30	${ }^{\text {CPR }}$	385	1542	M149	${ }^{3}$	${ }^{384.6}$	${ }^{1246}$	Rouline	83502	11/695			M	0.15			Smooth	5000								
River Front	136001	136002																			$6000+0.0$.			

Table TME-1: Large Diameter Pipeline Investigation Condition Database Table

$\begin{array}{\|l\|} \hline \text { Interceptor } \\ \text { Designation } \end{array}$	$\begin{array}{\|c} \hline \text { Interceptor Reach } \\ \text { Manhole } \\ \text { Designation } \\ \hline \end{array}$		Pipe Intormation			ccrv Inspection Data															Sonic Observation Data						Extemal Condilions		
	Usitream	Oomstrear	(iameter	Malerial	${ }_{\text {Lenter }}^{\substack{\text { Lengli in } \\ \text { leet }}}$		CCTVTape *	Line Segmen	Televised	ACT Key	ACT Desc.	wono	Dale		Detect	Corrsion	Fow Depin	Feature	Debis	Velocily	Locator		$\left\lvert\, \begin{aligned} & \text { Corasion } \\ & \text { Average }\end{aligned}\right.$	${ }_{\text {coras }}^{\substack{\text { Corsion } \\ \text { Max }}}$	${ }_{\text {Debris }}^{\text {Deverag }}$	Debis	Geolech	Surace	$]_{\text {Ground }}^{\text {Gwater }}$
	${ }_{\text {S }}^{5 \text { L055 }}$	$\frac{5059}{4 \times 010}$																			$44016+23800$	${ }_{\text {Preatas }}$	M	M					
	${ }_{\text {4N010 }}^{4}$	${ }_{\text {4N00 }}^{\text {4NOS }}$																											
	${ }^{\text {4n009 }}$	${ }_{4}{ }^{4} \mathbf{N 0 0 8}$																											
	${ }_{4}^{4}{ }^{\text {4N009 }}$ 9	${ }_{\text {a }}^{\text {ancos }}$																			${ }^{4 N 017} 4$	${ }_{\text {S }}^{\text {5659.600.9 }}$			L	M			
	${ }_{4}^{\text {40009 }}$	${ }^{40008}$																				${ }_{\text {7 }}^{\text {7072.7.222 }}$	L	L					
	${ }^{\text {4NNOOB }}$	${ }_{\text {anNos }}$																			400178720				L	\underline{L}			
	$4 \mathrm{4NOOB}$	4 NOO 4																				${ }^{96618.9768}$			L	$\stackrel{\text { L }}{ }$			
	anoos	4 NOO 3																			$4 \mathrm{NOT} 7+13330$								
	anoos	${ }^{\text {ancos }}$																			4 N017+13330	14348.14495			1	+			
	4 NOO 3	${ }^{4} \mathrm{NOO} 2$																											
	${ }_{\text {anNoz }}^{4}$	${ }_{\text {ancol }}^{\substack{\text { SNOOO }}}$																											
	${ }^{\text {SN0 }} 1$	${ }^{51008}$																											
	5 5008	5m007																			-								
	5m007	SM006																			$4 \mathrm{4} 002+1032$.								
																					$4 \mathrm{NOO}+1446.0$								
	${ }_{5}^{510006}$	${ }_{5 \times 1005}^{6126}$																			$4 \mathrm{NOCO}+1742.0$								
	${ }_{6}^{663030}$	${ }_{6}^{6 \times 126}$																			${ }^{662300.00}$	5057.5269							
	6k107	${ }_{6 \times 106}$																						τ					
	${ }_{\text {ckilo }}^{6 \times 106}$	${ }_{\substack{\text { 6KK106 } \\ \text { 6K104 }}}$																			${ }_{6}^{66030} 50570.0$	7124.727 .1			L	L			
	6K104	6K108							兂	,											$\frac{6 \times 030+8330}{6 \times 10000}$								
	$6 \mathrm{6k104}$	${ }_{6}^{6 \times 108}$																			$6 \mathrm{6k} 1040000$	${ }^{26,-17.6}$	L	M					
	${ }_{\text {7K108 }}$																					${ }^{176.3288}$	M	M					
		${ }_{7}^{7 \mathrm{lkO13}}$																				${ }_{5}^{5170.5494} 5$			L	L			
	${ }_{7}^{7 \text { KK013 }}$	${ }_{7 \times 012}^{76012}$																				564.4939.4			L				
	${ }_{\substack{7 \times 013 \\ 70013}}$	${ }_{\substack{7 \times 012 \\ 7 \times 012}}$																			¢K199999670	${ }^{\text {O }}$	L	M	L	L			
	$7 \mathrm{7k013}$	7 K 012																			6K10999870	${ }^{19556.12256}$	+			L			
	${ }_{7} 7 \mathrm{7k013}$	${ }_{7}$																			6K109 9 967,	${ }^{\text {a }}$	L	L	L	L			
	$\underset{7}{7 \times 013}$	${ }_{7}^{7 \times 012}$																			$\frac{610909+967.0}{6 \times 109+967.0}$	${ }^{\frac{1}{1270,-12858}} 1$	L	\llcorner	L	L			
	7 K 013	$7 \mathrm{Kk012}$																			$6 \mathrm{KK10999867.0}$	${ }^{13603.1375 .0}$	L	L	L	M			
	-	${ }^{76012}$																			${ }_{6}^{6 \times 1099+9667.0}$	${ }^{\text {a }}$	L	M		M			
	66012	66021 60021																				${ }^{722.87 .0}$	L	M					
	6.012	602021																			${ }^{601212+0.0}$	117.0.1327	L						
	${ }^{60012}$	${ }_{6}^{602021}$																			66012+0.0	4442.48994 89.460 .6	L	M	L	M			
	${ }_{6}^{66021} 6$	66020 66020																			6-6012.630,	6096.624.4	L	L					
	$\frac{61021}{66021}$	${ }_{6}^{602020}$																				${ }^{624.4669 .9} 6$		L	L	L			
	66021	${ }^{60020}$																			$6.6012+6030$	${ }^{684,6.714,6}$	L	L	L	L			
	${ }_{6}^{601021}$	${ }_{6}^{602020}$																			6-6.12663.0	$\xrightarrow{714.6 .744 .0}$	L	L	L				
	${ }_{6}^{6021}$	${ }_{6}^{60202}$																			${ }^{6} 6.012+603.0$	${ }^{761.1 .835 .8}$	L	L	L	L			
	${ }_{6}^{6021}$	${ }_{6}^{66020}$																			$61012+603.0$	850,3.911.0		M	L	M			
	${ }_{66021}^{6020}$	${ }_{6}^{66020}$																			${ }_{6} 6.012+66393.0$	${ }^{92657.956 .0}$	$\stackrel{M}{L}$	$\stackrel{M}{M}$	L	L			
	66020	6.019																			6L012+953.0								
	6.020	6.019																			933.0	70.5.985.7	m	M	L	L			
	6.6020	6.019																			${ }^{6} 6.012+953.0$	${ }^{9857.10159}$	$\stackrel{L}{L}$	$\stackrel{L}{L}$	L				
	66020	6 6019												硡							${ }_{\text {l }}^{12+95530}$	462.1060.4			L	L			
	6020	${ }^{66019}$																			$66.12+5930$	${ }^{1120.4 .13060 .0}$	L	M					
	66019	${ }^{601018}$												-							6L012+1300000	13060.13551							
	6.019	6.0018																			62012+13060	${ }^{1359.9 .14003}$	L	M					
	${ }_{6}^{6.019} 6$	${ }_{6}^{66018} 6$																			6Lilitat 313060	${ }^{142935.14950} 1$	L	L					
	${ }^{6.019}{ }_{6}^{61019}$	6018																			$\stackrel{6 L}{612+13060}$	${ }^{15050.15592} 1$	L	M					
																					66012+13060.0	1565.016102	L	M	L	L			

$\begin{array}{\|c\|} \hline \text { Interceptor } \\ \text { Designation } \\ \hline \end{array}$	Interceptor Reach Manhole Designation		Pipe Intormation			CCTV Inspection Data															Sonic Observation Data						Extemal Condilions		
	${ }_{\text {Unstream }}$	${ }_{\text {Oownstram }}$ 6L018		Maleeral	${ }_{\text {coent }}^{\substack{\text { Lengti in } \\ \text { teat }}}$	cole	ccrv Tape \#	Line Segment		Аст кey	Act Desc.	wowo	Dale	$\substack{\text { Relearace } \\ \text { Footage }}$	Deleca	Corrosion	Fow Depph	Feature	Debis	velocily	Looator	Relerence	$\left.\right\|_{\text {Corosion }} ^{\text {Average }}$	${ }_{\text {Corroion }}^{\text {Cox }}$	${ }_{\text {Lebris }}^{\text {Average }}$	Debis	Geotech	Sulace	
	${ }_{6}^{6019}$																					1 Foolage			L	L			
	6.018 ${ }^{6018}$	$\frac{66116}{6 \times 116}$																			-60022+13080.	$16702 \cdot 1685 \cdot 2$	L	\llcorner					
	${ }^{60} 6018$	${ }_{6 \times \mathrm{K} 116}$																			-6.012+1698.0.		L	${ }_{\text {M }}^{\text {M }}$					
	- ${ }_{\text {60018 }}$																					${ }^{1925,3,19956.6}$	L	M					
	${ }^{8 \mathrm{NNOO}}$	${ }_{\text {8NOO4 }}^{\text {8NOO4 }}$																				2667.281 .9							
	${ }^{\text {8N002 }}$	${ }^{\text {BNNOC4 }}$																			${ }_{\text {ONOO2 } 2+0.0}^{80}$	${ }^{\text {4024.4166 }}$ 476.4923	L	$\stackrel{L}{L}$					
	${ }^{8 \times \mathrm{NNOO} 12}$	${ }_{\text {®NNOO }}$																			BNOC42980								
	- ${ }_{\text {8NNOO2 }}$	${ }^{\text {8NNOO8 }}$																				${ }_{\text {2 }}^{2980.516 .8} 5$			$\stackrel{M}{L}$	$\stackrel{M}{L}$			
	${ }^{\text {BNOOB }}$	${ }_{\text {8N00 }}$																											
	${ }_{\text {8N008 }}^{\text {80008 }}$	${ }_{\text {8N009 }}$																			${ }^{\text {On }}$				L	L			
	${ }_{9}^{\text {9f0553 }}$	${ }^{10,0 \text { P005 }}$																			${ }^{\text {a }}$				L	L			
	- ${ }_{\text {9FF553 }}$	105005 106070																							L	L			
	(10FO25	\| 106070																				7750.790.3	L	M	L				
																					9F6053+775.0	7803.950.3			L	M			
	106070	106069																			9FO53+1337.0								
	105070	106069																			9FF53+1337.0	1355.6-1375.	L	M					
	106070	106069																			9F053+1337.0	1385, 6-1430.3	L	M					
	106069	106086																											
	${ }_{9} 9.0088$	${ }_{9} 96007$																			$9 \mathrm{Scos+0}+0$								
	${ }^{900088}$	${ }_{9}^{9.0007}$																					$\stackrel{L}{L}$	$\stackrel{\text { L }}{ }$					
		${ }^{\text {c/ }} 1000066$																				2628.277 .8	L	L					
	(100066	-																			$\frac{9.0085570 .0}{9.008+8590}$	6101.625.1	L	M					
	${ }^{1010006}$	${ }^{100005}$																			9t008885950.0	${ }^{\text {901, } 1 \text {-10376 }}$			M	M			
	(10006 ${ }_{\text {ctore }}$	10005 100012																				${ }^{10376.13366 .}$			$\stackrel{L}{L}$	$\stackrel{M}{M}$			
	${ }^{9.010}$	${ }^{100012} 10$																			$\xrightarrow{9.1010+0.00}$	${ }^{226.6 .240 .5}$	L	M					
	92010 ${ }_{\text {9,010 }}$	${ }^{10.012} 10$																			$\xrightarrow{9.1010+0.0} 9$		$\frac{\mathrm{L}}{\mathrm{L}}$	M					
	- 9.9010	${ }^{1000012} 1$																				${ }^{3165.3307} \begin{aligned} & \text { 3307420.9 }\end{aligned}$	L	$\stackrel{M}{M}$	\llcorner	1			
	10.012	1 100011																											
	(100012	${ }^{100011} 1$																			${ }^{\text {90010+418.0 }}$	${ }^{\text {4550, } 4959} 5$	L	M	L	M			
	-10012	${ }^{100011} 100011$																			$\xrightarrow{90010+418.0}$			M					
	(10012	${ }^{100011} 10011$																			$\frac{92010+418.0}{9.000+4180}$	- 7826.811 .8	M	M					
	10.001	${ }^{111005}$																			$\xrightarrow{9.0010+48180}$	${ }_{\text {9028.937. }}$	L	M					
	$\frac{11085}{110055}$	${ }^{1116007}$																			10.001+230.0								
	100007 10007	${ }^{111017} 11017$																			${ }^{10,001+2300} 1$	2331.329.8	\llcorner	M					
	(11017	$\frac{114110}{11110}$																			$\xrightarrow{10000770.0} 1$	${ }^{28.3 .32 .8}$			L	\llcorner			
	(100022																				$\frac{10,007+2000}{10002+0.0}$	${ }^{2437.365 .7}$	L	M					
	(109022	$\frac{10803}{\text { ionos }}$																			$\frac{100002+0.0}{10 M 02+0.0}$		$\stackrel{L}{L}$	L					
	10M002	10м003																			$10 \mathrm{MO} 2 \mathrm{z}+0.0$	${ }^{\text {274, }}$ 2-30394.4	L	L					
	100003	10 MOO																			10M022+312.0.								
	100003	10 MOO 4																			10м022+312.0.	424.6.471.1		\llcorner					
	10M003	10M004																			10MO22+3120	485.1546 .6	\llcorner	m					
	romoos	10M004																			10MO22+312.0	5564.824.0	M	M					
	10 MOO 4	10M005																			$10 \mathrm{MOO2}+824.0$								
	109004	${ }^{\text {1000005 }} 1$																			10MO22 8824.0	824.0.1358. 8	M						
	-	${ }^{1260037}$																			$1000017+0.0$ $126037+0.0$	2240030							
	126037	126017																			${ }^{1220037+0.0}$	${ }^{210.066 .0}$	$\stackrel{L}{L}$	M					
																						$81.5 \cdot 2162$							

$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Interceptor } \\ \text { Designation } \end{array} \\ \hline \end{array}$	Interceptor Reach Manhole Designation		Pipe Information			CCTV Inspection Data															Sonic Observation Data						Extemal Condtions		
	Upstream	Oomstream	Diamerer in inches	Malerial	$\underbrace{}_{\substack{\text { Lenght in } \\ \text { leel }}}$		CCTV Tape \#	Line Sagmen	Telelisisd	Act Key	ACt desc.	wono	Dale		Delect	Corrosion	Fow Depln	Feaure	Debis	Velocily	Locator	Relerence Foolage	${ }_{\substack{\text { Corrosion } \\ \text { Average }}}$	${ }_{\substack{\text { Corssion } \\ \text { Nax }}}^{\text {Nata }}$		Debis	Geolech	Surace	
	${ }^{126037} 1$	${ }^{1226017} 126017$																			- $126037+0.0$		${ }^{\text {average }}$	$\frac{\text { max }}{\text { M }}$	Luerse	${ }_{\text {L }} \mathrm{L}$			
	${ }^{126037} 12037$	${ }^{1220017}{ }^{126017}$																			$\xrightarrow{126037+0.0} 1$	${ }^{2461-261.9} \mathbf{2 6 7 6 . 9}$	L	\llcorner	L	$\stackrel{\text { L }}{ }$			
	${ }^{1260337}$	${ }^{1260717} 1$																			$\frac{126037+0.0}{126037+0.0}$	${ }_{\substack{\text { 2706,-306.4 } \\ 3064219}}$	1	M	L	$\stackrel{\text { M }}{\text { L }}$			
	126017	126016																			$126037+330$.								
	126017	126016																			$126037+330$	3516.3661			L	\cdots			
	126017	126016																			126037 3300	3816.4111	1	M					
	126017	126016																			126037 330.0	4111.4263	L	M	\llcorner	M			
	126017	126016																			126037 +330	4263.4416							
	126017	126016																			$126037+330.0$	441.6-4560	1	1					
	126017	126016																			126037.330	486.95013	L	M					
	126017	125016																			$126637+30.0$	5370.5825	\llcorner	м					
	126017	126016																			$126037+3300$	5972.6420	1	,					
	126017	126016																			$126037+330.0$	658.0.673.0	\llcorner	м					
	126017	126016																			$126037+330$.	6730.6872				1			
	126016	136001																			$120037+330$								
	126016	136001																			126037689.0	6872.7172	1	M	L	,			
	126016	136001																			1260376898	7172.7337	L	M					
	126016	136001																			$126037+688.0$	7622.777 .4	\llcorner	M					
	126016	136001																			1260376889.	822 4-837.1	,	,					
	126016	136001																			1260377688.0	8521-867.6				L			
	126016	136001																			$126037+688.0$	887 -8826	L	м	L	\llcorner			
	126016	136001																			1260377688.0	9423.9723	L	M					
	126016	136001																				10002-10325	L	M					
	${ }^{14 \times 1406}$	${ }_{1}^{14 \mathrm{KKO25}}$																				10002-10325	L	M					
	${ }_{1}^{14 \times 016}$	${ }_{\text {14kRO25 }}$																					L		$\stackrel{L}{L}$	$\stackrel{L}{L}$			
	${ }^{144 \times 016}$	${ }_{14 \mathrm{Ck} 225}^{14}$																			$\frac{14 \times 616+0,0}{14 \mathrm{KO} 16+00}$	- 1587.1879			L	L			
	${ }^{14 \times 6016} 10$	${ }_{14 \times 14025}^{14025}$																			$\xrightarrow{19460676+0.0}$		L	M	L	L			
	${ }^{14 \times 14016}$	${ }^{144 \times 2025}$																			$\frac{146 \times 16+0.0}{14 \mathrm{KO} 16+0.0}$	${ }^{2284.2426}{ }^{281-3026}$	$\stackrel{L}{L}$	M	L	L			
	${ }^{14 \mathrm{~K} 016}$	${ }_{1}^{14 k \times 2025}$																				${ }^{\text {a }}$							
	${ }^{144 \times 0016}$	${ }_{1}^{144 \mathrm{KkO25}}$																			14K016+0.0		L	M	L	L			
	${ }^{1444016}$	${ }_{1}^{14 \mathrm{KkO22} 5}$																			$14 \times 016+0.0$	4086.4228	\llcorner	M	L	L			
																					$14 \mathrm{KKO16}+0.0$	4228-4828			L	L			
	14×025	14 K 228																			14K016-483.0								
	14×225	14 K 228																			14K016+483.0	4836.4996	\llcorner	M	L	L			
	14 K 225	140208																			14K016+683.0	4999.6-513.8			\llcorner	\llcorner			
	14 K 225	14 K 228																			14K016-483,	5138.528 .8	\llcorner	1	M	M			
	14 K 025	14×028																			14K016+ 483.0	528.8.604.6	\llcorner	M	1	\llcorner			
	14 K 225	14 K 228																			14K016+483.0	6046.648.8			L	\llcorner			
	14×025	14 K 028																			$14 \times 016+483.0$	6488.6943	L	M	L	\llcorner			
	14 K 025	14K028																			$14 \times 1616+88.0$	6943.723.7	L	M					
	14×028	146037																			$14 K 016+725$.								
	14 K 288	$14 к 037$																			14K016.725.0	7545-783.7	м	M					
	14×228	14×037																			$14 K 016+725.0$	7897.8140	L	L					
	144028	14 K 037																			$14 \times 1616+725.0$	856.7.9039	\llcorner	m					

$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|cc:\|c\|cr} \text { Designation } \end{array}$	$\begin{array}{\|c\|} \hline \text { Interceptor Reach } \\ \text { Manhole } \\ \text { Designation } \end{array}$		Pipe Intormation			ccrv inspection Data															Sonic Observation Data						Extermal Conditions		
	Usitream	Domstream		Maleria	${ }_{\substack{\text { Lengut in } \\ \text { leet }}}^{\text {a }}$		CcTV Tape \#\|	Line Segmen\|	Televised Lengl	АСт Key	ACT Desc,	wono	Date		Delect	Corrosion	Flow Depil	Feaure	Debis	Veloxiy	Localor	$\begin{gathered} \text { Relerence } \\ \text { Foolage } \\ \hline \end{gathered}$		$\underset{\substack{\text { Crassion } \\ \text { Max }}}{\text { M }}$	${ }_{\text {den }} \begin{aligned} & \text { Debris } \\ & \text { Averae }\end{aligned}$	$\xrightarrow{\text { Debisis }}$ Max	Geolech	Suraee	$\left.\right\|_{\text {criouna- }} ^{\text {water }}$
	146028	${ }^{146037}$																			14K016+725.0	9039.9336	1	M					
	14 K 028	14×037																			14 K 016 +725. 0	963.6.1012.0	\llcorner	M					
	146028	146037																			14×1616725.0	1026.9.117.4	L	M					
	14×028	146037																			$14 \mathrm{KO16.6725.0}$	1132.4.1479	L	M					
	14 K 288	14×037																			14K016.725.0	11627-177.1	1	M					
	$14 \mathrm{KO28}$	14×637																			,								
	14 K 28	14×037																			$14 \mathrm{~K} 016+725$.	1192.6.1281.8	1	M					
		${ }_{\text {l }}^{1 \text { 146037 }}$																			${ }_{\text {l }}^{14 \times 1016.725 .50}$	12976.-1311.3	1	M					
	${ }^{1446551} 1$																					${ }^{90.5 \cdot 1904}$	1	M					
	${ }^{1446551} 1$	15 K 012 $15 \mathrm{Ko12}$																			${ }_{\text {L }}^{146051+0.0}$		L	M					
	14 k 047	${ }_{1} 14 \times 0657$																			$51+0.0$	${ }^{\text {230,4, } 335.8}$	L	$\stackrel{M}{L}$					
	${ }^{146 \times 07}{ }^{1.46047}$	${ }_{1}^{14 \times 6057}{ }_{1}$																			${ }_{1}^{14 \times 64647+0.00}$	3.548 .5	L						
	${ }^{14 \times 4 \times 37}$	${ }_{1}^{14 k \times 557}$																					M	M	L	$\stackrel{M}{M}$			
	${ }_{1}^{1446077}{ }_{1}^{146047}$	${ }^{14 \times 6057}{ }^{14657}$																			${ }_{1}^{1486077+0.0}$	${ }_{\text {933.-1095 }}^{\text {937.935 }}$	L	$\stackrel{M}{M}$					
	${ }_{1}^{14 \mathrm{~K} \times 377}$	${ }_{\text {l }}^{14 \times 65057}$																			${ }^{1446047+00} 1$	${ }^{1240.1695}$	M	M	$\stackrel{L}{L}$	M			
	14.6047																				$14 \mathrm{k} \times 877+0.0$	${ }^{\text {184 }}$ 12-2030	M	M	\underline{L}	L			
	14 K 057	14 K 048																			$14 \mathrm{~K} 047+2030$								
	14×057	14 K 048																			14 K047 +2030	2030.229.7			\llcorner	\llcorner			
	144057	14 K<as																			$14 \times 047+203.0$	229.7.2447	m	м	M	M			
	1440057	14 K 988																			$14 \times 047+203.0$	2447.2592.	1	M					
	14×057	14 K 008																			$14 \times 6047+203.0$	2592:2899	\llcorner	M	1	1			
	14 K 057	14 KCOAB																			$14 \mathrm{KKO47}+2030$	289.9.3044	L	M					
	14 K 587	1446048																			14×64772030	304.4.320.2	L	M	1	1			
	14 K 57	14 K 048																			14 140477.203,	320:23449	L	M					
	14 K 057	14 K 948																			$14 \mathrm{~K} 047+2030$	3340.3796	M	M					
	14×057	14 K ¢ 88																			$14 \times 6047+2030$	3796.3946	L	L	L	1			
	14×057	14 14048 $^{\text {a }}$																			$14 \mathrm{~K} 047+2030$	3946.409.4	m	M	L	L			
	14×057	14 K 248																			14 K 047 +2030	40994.425.4	m	M					
	146057	14 K 048																			$14 \times 6047+2030$	425.4.439.6	M	M	1	\llcorner			
	146057	144×048																			$14 \mathrm{~K} 047+203.0$	439.6.445.0			L	1			
	$14 \mathrm{~K} \times 88$	19 K 099																			$1414 \mathrm{KC77}+4450$								
	14 K ¢ ${ }^{\text {a }}$	145049																			14×047 +445.	4450.4848			1	\llcorner			
	14 K 048	14 K ¢ 9																			$1450477+455.0$	${ }_{4848.500 .6}$	1	\llcorner					
	14 KO 48	$14 \mathrm{KCO49}$																			14 K 077445.0	559.574.5	\llcorner	M	1	1			
	1440048	14 K 049																			14×047 +445.0	634.8.650.5	1	M					
	14 K ¢48	14 K 049																			14 K 047 +445.0	650.5 .6645	м	m					
	14 K 048	14 K 099																			14 K 047.445 .0	828,7.844.4			L	1			
	14 K0as	14 K 049																			14 K 477445.0	8444.4.80.2	M	M	L	1			
	14 Koas	14 K 049																			14 K 077.445 .0	860.2 .941 .1	м	M					
	146049	14 K 650																			$14 \mathrm{KO47}+9430$								
	146049	14 K 50																			14 K 047 , 9933.	9411.1971.4	\llcorner	1	L	1			
	14 K 049	14 K 550																			14×647.9430	971.41050,	M	M					
	$14 \mathrm{KO49}$	$14 \mathrm{Ko50}$																			14 K 077.9930	10507.10662	1	M	1	1			

Table TME-1: Large Diameter Pipeline Investigation Condition Database Table

Interceptor Designation	 Interceptor Reach Manhole Designation		Pipe Intormation			ccTV Inspection Data															Sonic Observation Data						Extemal Condilions		
	Usostream	Dowsstrean		Maleral	\|ent		CcTV Tape *	Line Seament	(televised	Act Key	Act desc,	wono	Dale		Defect	Corosion	Flow Depph	Featre	Debis	Velocoly	Localor	$\xrightarrow[\substack{\text { Relerence } \\ \text { Foxage }}]{ }$	$\underbrace{\substack{\text { Cuerage }}}_{\text {Corrsion }}$		Debris	${ }_{\text {den }}^{\substack{\text { Debis } \\ \text { Max }}}$	Geolech	Surace	${ }_{\text {a }}^{\text {ciorer }}$
	1450249	14 K 50																			14K077.993.0	10662.10822			\llcorner	L			
	14 K 049	144050																			14 K 477 +943.0	1082 2.1114.6	1	м	\llcorner	L			
	1460049	$14 \mathrm{Ko50}$																			$14 \mathrm{~K} 477+913.0$	11146-1129.6	M	м					
	14 K 299	14K050																			$14 \times 147+493.0$	11296-11769	1	M					
	14 K 049	${ }_{146050}$																											
	144050	$14 \mathrm{KKO51}$																			K047+9300	1208, 7-12290.	\llcorner	m					
	14K050	,																			0								
	146050	14K051																			0	1229.0.1240.7	1	M					
	14×050	14×051																			${ }^{1047+1229}$	1288.8 .1351 .9			L	м			
	14×650	14K051																			$14 \mathrm{~K} 077+1229$.								
	${ }^{16 \mathrm{~K} \text { (}}$	${ }_{1}^{16 \mathrm{KKO} 04}$																			16 K 050	1351.9-13829	1	1	L	L			
	${ }^{166 \times 055}$	${ }_{1}^{1.6 \mathrm{KkO}}{ }^{\text {a }}$																			$\frac{1686055+0.0}{16 \text { Kocta } 0.0}$	${ }^{1040.5 .1555}$	$\stackrel{M}{L}$	$\stackrel{\text { M }}{ }$					
	${ }^{16 \mathrm{k} 005}$	${ }^{1.66 \mathrm{~K} 044}$																			$\frac{168 \times 654.00}{16 \times C 55+0}$		$\stackrel{L}{L}$	M					
	${ }^{166005}$	${ }^{166 \mathrm{kroa}}$																				${ }^{\text {5 }} 5$	$\stackrel{L}{4}$	M	L	L			
	${ }^{16 \mathrm{~K} \text { OLO }}$																				${ }_{1}^{1660655050.0}$	${ }^{5998.66138}$	M	M	L	L			
	16 K \%os	$16 \mathrm{KkO4}$																			$\frac{1650505+0.0}{16 K 05+00}$	${ }^{6283.673 .5}$	L	$\stackrel{M}{M}$	L	L			
	16к004	166003																			16K055.679.0								
	156004	16 K 003																			$16 \kappa 0056679$.	679.0.685.0	1	m	\llcorner	1			
	166003	165002																			16к005 6885.0								
	16K003	$16 \kappa 002$																			16 KO 5 +6850.	685.0.704.0	\llcorner	m	1	\llcorner			
	$16 \mathrm{Ko03}$	16 K 022																			$165005+685.0$	704.0.734.0	1	м					
	16 K 03	16 Koz																			16K005+685.0	8331.923.5	\llcorner	M					
	16K003	16 KoO 2																			$166005+685.0$	923.59383	m	m					
	166003	16 K 002																			16K005 685.0	938.3.9420	1	M					
	166002	186001																			$166005+9920$								
	16 KOO 2	16K001																			$166005+942.0$	9420.986.5	L	м					
	16ко02	16 K 001																			$16 \mathrm{~K} 055+9420$	1103.4.1163.4	L	м					
	166002	16K001																			16K055+9420	1163.4.1193.1	m	M					
	16 KOO 2	16 K 001																			$166005+942$.	1193.1.1208.1	L	L					
	16 K 022	16 K 007																			$16 \mathrm{KNO55}+942.0$	1420.6.1458.0	\llcorner	M					
	16 K 001	17k010																			${ }^{16 k 0055+1448 .}$								
	186001	7 K 010																			$16 \mathrm{co05}+1458$.	14580.1480,	\llcorner	M					
	16 K 001	17 K 010																			${ }^{166005+1458 .}$	1495.6.1541.1	\llcorner	M					
	16K001	17 k 010																			${ }^{166005+1458 .}$	1547.-1-155.6	M	M					
	16K001	17×010																			${ }^{16 k 005+1458 .}$	1555.6-1691.0	L	м					
	16K001	17k010																			Cos+	1928.1.1993.6	1	M					
	16 K 001	17K010																			${ }^{16 k 005+1458 .}$	1958.0.1973.0	1	M					
	16600	17 K 010																			,	21530-2167.7	L	M					
	166001	17\%010																			O 0 O 11485	2167,-2189,7	M	M					
	166001 17 K 010 7 K 10																				(17k00+0.0	21897.-2194.1	L	M					
	17 k 010	${ }^{177 k 009}$																			$\frac{17800.0 .00}{17 \times 100+0.0}$		L	$\stackrel{\text { L }}{\text { L }}$					
	176009	17K008																			$17 \times 101+589.0$								

Table TME-1: Large Diameter Pipeline Investigation Condition Database Table

$\begin{array}{\|l\|} \hline \text { Interceptor } \\ \text { Designation } \end{array}$	Interceptor Reach Manhole Designation		Pipe Intormation			CCTV Inspection Data															Sonic Observation Data						External Conditions		
	Usasteam	Oomsstrear	${ }_{\text {den }}^{\substack{\text { Diameter } \\ \text { ininctes }}}$	Malenial	${ }^{\substack{\text { Lengat in } \\ \text { teet }}}$	(eicerence	CcTV Tape \#	Line Segment	$\xrightarrow[\substack{\text { Teeevsed } \\ \text { Lenalm }}]{\text { a }}$	ACT Key	ACT Desc	wono	Dale		Delect	Corrosion	Fiow Deph	Feature	Debis	Velocily	Loalor			$\underset{\substack{\text { corasion } \\ \text { Max }}}{\text { cen }}$	${ }_{\text {Dentis }}^{\substack{\text { Deverase }}}$	Debris Max	Geolech	Surace	
	17k009	17 K 08																			17k010.5990	6136.643		M					
	17к009	17K008																			7K0010.5990	6599.6743	M	M					
	$17 \mathrm{K009}$	17K008																											
	17 K 008																				17K010.599.0.	674.3719.6	\llcorner	M					
	17K008	176007																			17K010.768.0								
	$17 \mathrm{K008}$	17 K 007																			17K010.768.0	824.0.8395	\llcorner	1					
	17K008	17k007																			$17 \mathrm{~K} 10+7780$.	866,7.914.5	1	M					
	17K008	176007																			17K010.768.0	928.7.958.9	1	m					
	17 K 008	17K007																			\%rovere	-	L	,					
	17 Kcos	17 K 007																			18010760.	8807.7499.7	L						
																					17×1010768.0	1137.5.1167.0	1	M					
	17\%008	176007																			17\%010.768.0	1823-31196.7	L	\llcorner					
	17K007	17\%006																			${ }^{17 k 0010+1200}$								
	$17 \mathrm{K007}$	17 K 006																			${ }^{17 \times 0100+1200}$	1211.5-1332.2	1	м					
	17×007	17 K 006																			200.	2.136		\cdots					
	17K007	176006																			$7 \mathrm{7k010+1200}$.	13472.1361.9	L	M					
	17K007	17K006																			$\stackrel{0}{1200}$	1377.4-1991.6	L	M					
																					${ }^{0}$	1406-6-1422.1	\llcorner	м					
	17k607	$17 \% 006$																			${ }_{0}$	1466.9 .1488 .9	\llcorner	M					
	17K007	17K006																			Trk010+1200.	1496.6 .151 .6	\llcorner	м					
	${ }_{\substack{17 \% 607 \\ 17 \% 007}}$	${ }_{\text {172006 }} 17$																			${ }_{\text {coser }}$	${ }_{1}^{15268.151521}$	$\stackrel{1}{4}$	$\stackrel{M}{M}$					
	17k007	17 K 006																			O+1200.								
	17k007	17K006																			17k010+1200.	16499.91665.6	L	M					
	(18013																				12013	6794.47096	L	M					
	- 18.0013																				$\frac{188013+0.0}{12013+0.0}$	${ }^{\frac{35.363 .3}{36.3 .9 .7}}$	$\stackrel{M}{L}$	$\stackrel{M}{M}$					
	${ }^{188013}$	${ }^{\text {cosen }}$																			$\frac{18013+0.0}{18013+00}$	${ }_{\substack{\text { 78.5.1537 } \\ 1537.169}}$	L	$\stackrel{M}{M}$					
	-	${ }^{\text {liejol4 }}$																			18013.0.0	${ }^{\text {13972.2589 }}$	$\stackrel{M}{L}$	$\stackrel{\text { M }}{ }$					
	18013	${ }^{\text {P18014 }}$																			$\stackrel{188013+0.0}{18013+0.0}$	${ }^{2739.29894}$	$\stackrel{M}{L}$	${ }_{\text {M }}^{\text {M }}$					
	${ }^{18.0013}$	${ }_{18}^{18014}$																			$\frac{18,013+0.0}{18013+0.0}$	${ }^{3191.3339}$	$\stackrel{\text { L }}{\text { M }}$	M					
	${ }^{188013}$	180014																			$\frac{18013+0.0}{18013+00}$	${ }^{3494.36388}$		$\stackrel{M}{M}$					
	(12013 ${ }^{180013}$	${ }_{\text {l }}^{\substack{180014 \\ 180014}}$																			$18.10013+0.0$		L	M					
	18013	+18014																			$\stackrel{180013+0.0}{18013+0.0}$	${ }^{\text {4538.469.1. }}$	$\stackrel{M}{L}$	M					
	(18013	${ }^{18180014} 10$																			$\xrightarrow{18013+0.0}$	${ }_{\text {5396.554.1 }}^{554.154 .3}$	M	$\stackrel{M}{M}$					
	180013	${ }^{185014}$																			$\frac{18013,0.0}{180}$		$\stackrel{\text { L }}{ }$	M					
	- 18.18014	${ }^{1818015} 1$																			${ }^{182013+3}+3.05 .0$	734.8-759.0	L	M					
	180014	${ }^{1818015} 18.015$																			${ }^{181801377550} 1$	${ }_{\text {7550.0.400 }}$	L	$\stackrel{M}{M}$					
	- 18.014																						L	$\stackrel{M}{M}$					
	(180014																				${ }^{18013} 187550$	${ }_{\text {899, }}^{\text {89,944.4 }}$	M	$\stackrel{M}{M}$					
	${ }^{1880014}$	${ }^{1880015}$																			18001377550	${ }^{\text {9292, } 2.974 .9}$	M	M					
	+18014 ${ }^{1818} 1$	${ }^{18,0015} 1$																			${ }^{1800137755 .} 1$	$\xrightarrow{\text { 974.9.98999.9 }}$	L	M					
	- 18.8014	${ }^{188015} 18015$																			18001377550.	1050.1.10876	M	$\stackrel{M}{M}$					
																					18.18137755 .0	1164.412080	L	M					
	1 12015	190001																			${ }^{1800} 3$ +1208.								
	1 18015	19 NO 1																			${ }^{18003}{ }^{181208}$	1208.0.1239.1	L	M					
	18.0015	190001																			0	1239, -1-137.0	M	M					
	18,015	19001																			${ }^{188013+12088}$	1374.0.1419.5							

$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Interceptor } \\ \text { Designatlon } \end{array} \\ \hline \end{array}$	Interceptor Reach Manhole Designation		Pipe Information			CCTV Inspection Data															Sonlc Observation Data						Exteriál Conditions		
	Usitream	Oomstrear	(iameter	Maleria	${ }_{\substack{\text { Lenght in } \\ \text { leet }}}^{\substack{\text { a }}}$		CcTv Tape *	Line Segment	$\xrightarrow[\substack{\text { Televised } \\ \text { Lenglt }}]{ }$	Аст Key	ACt desc.	wono	Dale		Deleca	Corrosion	Flow Deplh	Feaure	Debis	Velocily	Locator	Relerarace Fooase	${ }_{\text {corasion }}^{\text {Cuvare }}$	${ }_{\substack{\text { corosion } \\ \text { Max }}}$	$\xrightarrow{\text { Debis }}$ Average	${ }_{\text {Debris }}^{\substack{\text { Debis } \\ \text { Max }}}$	Geolech	Surace	$\left.\right\|_{\text {Ground }} ^{\text {Geter }}$
	เช015	19000																			${ }^{188013+1208 .}$	14195.14992	M	\cdots					
	180015	19.001																			${ }^{18013+12088}$	14492.1464.5	L	м					
	12 NO 15	19001																			${ }^{180073+1208 .}$	1464-5-1880.0	м	M					
	18.015	1910001																			180013+1208	1994.0 .1540 .0	L	1					
	18,015	19.1001						.													${ }^{12013}{ }^{1212088}$	1540-0.15992.	M	м					
	18.015	19.001																			${ }_{0}^{3+1208}$	15992-1614.4	L	м					
	8015	19,001																			${ }^{180113+1208}$	1614.4.1630.0	M	M					
	191001	19001																			18013+1630.								
	19.000	19001																			${ }^{\text {coser }}$	16300.1656.9	m	м					
	19.001	19001																				16390.-16692	\llcorner	м					
	9,001	191001																			$18.013+1630$	16692.1884 .8	m	M					
	19.001	191001																			- $18.1313+1630$	16848.1699 .0	1	M					
	19.001	91001																			${ }^{180013+1630}$	16990.17590	M	M					
	19,001	19001																			${ }^{180013+1630}$	17590.1774.2	\llcorner	m					
	190001	191001																			${ }^{180013+1630 .}$	1774.2.17900	m	m					
	190001	191001																			${ }^{18.0139+1630} 0$	17900-1834.7	1	M					
	195001	191001																			${ }^{180013+1630 .}$	1834.7.2014.3	M	m					
	19.001	191001																				2014.3.209.1	\llcorner	\cdots					
	19001	19001																			${ }^{180013+1630} 0$	2029.1.2071.0	m	m					

LITTLE ROCK WASTEWATER UTILITY

HYDRAULIC MODELING/COLLECTION SYSTEM FACILITY PLAN SECAP SYSTEM EVALUATION AND CAPACITY ASSURANCE PLAN

LARGE DIAMETER SEWER INVESTIGATION APPENDIX D
 FINAL DRAFT

JUNE 2001

WASTEWATER UTILITY
Section 1 - VIDEO TAPE SUMMARY TABLE
SECTION 2 - LITTLE ROCK WASTEWATER UTILITY PLANT SEWER VIDEO EVALUATION FROM - TAPE \# 144
2O001-3O002 2-1
3N003-3N004 2-2
3N004-3N005 2-3
3N005-4N089 2-4
3O002-30001 2-5
4M014-4M013 2-6
4M016-4M015 2-7
4N014-4M016 2-8
4N089-4N014 2-9
5L051-5L050 2-10
5L053-5L052 2-11
5L059-5L053 2-12
10L009-10L008 2-13
SECTION 3 - LITTLE ROCK WASTEWATER UTILITY PLANT SEWER VIDEO EVALUATION FROM - TAPE \# 146
0M052-0M029 3-1
0M053-0M052 3-2
0M054-0M053 3-3
0M055-0M054 3-4
0M056-0M055 3-5
0N001-0N024 3-6
0N002-0N001 3-7
0N003-0N002 3-8
0N024-0N023 3-9
7C005-7C008. 3-10
7C006-7C005 3-11
9K007-9L012 3-12
9K008-9K007 3-13
9K009-9K008 3-14
9L012-9L011 3-15
SECTION 4 - LITTLE ROCK WASTEWATER UTILITY PLANT SEWER VIDEO EVALUATION FROM - TAPE \# 147 8D003-8D002 4-1
8D004-8D003 4-2
8D096-8D006 4-3
9E002-9E043 4-4
9E019-9F011 4-5
9E043-9E012 4-6
9F009-9F012 4-7

Table of Contents

9F011-9F009 4-8
9F012-9F013 4-9
9F013-9F016 4-10
9F016-9F018 4-11
9F018-9E022 4-12
SECTION 5 - LITTLE ROCK WASTEWATER UTILITY PLANT SEWER VIDEO EVALUATION FROM - TAPE \# 148
4B001-4B002 5-1
4B002-4B003 5-2
4B003-4B004 5-3
4B004-4B005 5-4
4B005-4B006 5-5
4B006-4C041 5-6
4B041-5C001 5-7
5C001-5C002 5-8
5C002-5C003 5-9
5C003-5C004 5-10
6C002-6C003 5-11
6C003-6C004 5-12
6C004-6C005 5-13
6C005-7C007 5-14
8C002-8D094 5-15
8D094-8D096 5-16
SECTION 6 - LITTLE ROCK WASTEWATER UTILITY PLANT SEWER VIDEO EVALUATION FROM - TAPE \# 149
2B004-2B005 6-1
2B005-3B001 6-2
3B001-3B002 6-3
3B002-4B003 6-4
3B003-3B004 6-5
5C005-5C006 6-6
5C006-6C001 6-7
6C001-6C002 6-8
13G001-13G002 6-9
13G002-13G003 6-10
13G003-13G004 6-11
15G002-15G013 6-12
15G013-15G014 6-13
15G014-15H1 10 6-14

Table of Contents

16G001-16H001 6-15
SECTION 7 - LITTLE ROCK WASTEWATER UTILITY PLANT SEWER VIDEO EVALUATION FROM - TAPE \# 150
3B004-3B044 7-1
3B005-3B006 7-2
3B006-4B001 7-3
3B044-3B005 7-4
4M012-4L013 7-5
4M013-4M012 7-6
4M014-4M013 7-8
5L052-5L051 7-9
17H002-17H003 7-10
17H003-17H004 7-11
SECTION 8 - LITTLE ROCK WASTEWATER UTILITY PLANT SEWER VIDEO EVALUATION FROM - TAPE MISC.
2O024-20025 8-1
20025-20026 8-2
20026-20027 8-3
3B044-3B005 8-4
3H074-3H076 8-5
5L052-5L051 8-6
7C008-7C009 8-7
7C009-7C010 8-8
8N010-8N009 8-9
8N012-8N004 8-10
10L008-10L007 8-11
11K168-11L041 812
11L023-11L042 8-13
11L024-11L023 8-14
11L040-11L024 8-15
11L041-11L040 8-16
22M002-22M001 8-17
SECTION 9 - LITTLE ROCK WASTEWATER UTILITY PLANT SEWER VIDEO EVALUATION FROM - TAPE \# 201
6K108-6K109 9-1
6K109-7K108 9-2
Little Rock Wastewateı Master Plan Job No. 147004 (1) CCTV OF LARGE DIAMETER SEWER INTERCEPTORS SEGMENTS

	CCTV OF LARGE DIAMETER SEWER INTERCEPTORS SEGMENTS								
			Prov	ided to	Montgom	ery Wats	on		
-				PIPE			LINE		
	UPSTREAM	DOWNSTREAM	LENGTH	SIZE	PIPE	TAPE	SEGMENT	LOCATION	
INTERCEPTOR	MANHOLE	MANHOLE	FEET	INCHES	MATERIAL	NUMBER	NUMBER	COUNTER	COMMENTS
LOWER SWAGGEATY	11 L023	111042	248	24	VYLON PVC	MISC	5	1350	SOME EGG SHAPE/Bad I\&/ IN MANHOLE
PORT	22M002	22M001	-79	24	CPN	MISC	6	1615	50° LROOTS
Brödie-hinomandiv	20024	20025	65	24	DIP	MISC	7	1847	
BRODIE-HINOMAN-DIV	20025	20026	224	24	DIP	MISC	8	1926	
BRODIE-HINDMAN-DIV	20026	20007	-98	24	DIP	MISC	9	2090	BARIN FRONT OF PIPE IN BOX
isth indrustial relay	8N012	8 N 004	293	24	HOBAS	MIISC	10	2221	293° OUTSIDE DROP
65 TH INDRUSTAAL	8 NO 10	8N009	276	24	CIP	MISC	11	2404	
iebsamen	$7 \mathrm{C008}$	76009	1260	42	CPN	MISC	12	3103	638' TEE RISER MANHOLE
REBSAMEN	76009	7 CO 10	620	42	CPN	MISC	13	3773	
ROCK CAEEK	3H074	-- $\quad 3 \mathrm{H} 076$	216	24	CPA	MISC	14	4221	58. TOP LTAP LIVE
NORTH 60	10L008	-- 10L007	581	48	CPR	MISC	${ }^{15}$	4345	$561 . L M E D R O O T S$
REBSAMEN	38044	38005	73	30	CPR	MISC	16	4679	
SOUTH 60	52052	5 L051	297	36	CPR	MISC	17	4770	145' \& 151' JOINT LEAKS 181
NOATH 60	6K108	-6K109	224	30	CPR	M201	1	0	
NORṪH 60	6K109	7 K 108	517	42	CPR	M201	2	477	419 BORED HOLE IN TOP OF PIPE
...-- .-...-									
-…-	-			- - -	-				
				---	--_-				
- - .-....									
- - -									
-...									
-		-							
$\square-\square$									
$\square-$									
\cdots									
-									
-.......	-								
-	…-7.....	\cdots	\cdots	-	. +1.	-	- .-.........		
\qquad		------							
- --.....	:								

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location _20, 30

Tape Number M/44 Inspection Date_ $\quad 8 / 16 / 79$ (641 ft)

Diameter 42
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date
Upstream Manhole_ 20001
Dnstream Manhole $\quad 30002$
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstrean, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	0	-	-	259	-
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: | T-turbulent |
| :--- |
| |
| |
| L - laminar |
| Q - quiescent |

General Notes:

Tio Dack
Can't wer canom
(sul ment seymext)

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location $3 N$

Tape Number M/44
Inspection Date_ $8 / 16 / 99$ (850)
Diameter
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date \qquad
Upstream Manhole \qquad
Dnstream Manhole \qquad
\qquad
Total Length of Survey \qquad

Survey Dir.(circle one)

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	0	-	-	$25 \%-\quad L$	-
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T-turbulent
L - laminar
Q - quiescent
General Notes:
Lues s New

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant
 Sewer Video Evaluation Form

Area \qquad
Grid Location $3 N$
Tape Number M144 Inspection Date \qquad 8/17/99 \square
Diameter 42
Material(circle one) PVC, Clay, Concrete, Other \qquad cPR Installation Date
Upstream Manhole 3N004
Dnstream Manhole_ 3NOO 5
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	D	-	-	$257, ~ L$	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

,

Velocity:	T-turbulent L-laminar Q-quiescent
General Notes:	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes
237		Goad shat M/ crown

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location_ $3 N, 4 N$
Tape Number M/44
Inspection Date $0 / 17 / 99$ (794)

Diameter 42
Material(circle one) PVC, Clay, Concrete, Other_ C $P R$ Installation Date
Upstream Manhole 3N1005
Dnstream Manhole_ $4 N 089$
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream , Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	0				259
100					-
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T - turbulent
L - laminar
Q -quiescent
General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location_ 30

Tape Number \qquad
Inspection Date $8 / 16 / 99$ (26B)

Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date
Upstream Manhole _30002
Dnstream Manhole _30001
Total Length of Survey \qquad $26 /$

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	0			259.	-
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes
$26 /$	$M H$	C ARG5 - MG Corrosion

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area \qquad
Grid Location_ $4 M$
Tape Number M/44
Inspection Date_ $8 / 18 / 99$ (332)
Diameter AZ"
Material(circle one) PVC, Clay, Concrete, Other \qquad
Installation Date \qquad
\qquad
Dnstream Manhole \qquad 4 MOL

Total Length of Survey \qquad $3 / 7$

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100	0			30	3.
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:
T -turbulent
L - laminar
Q - quiescent
General Notes:
\qquad
\qquad
Cunt on pips wall
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area \qquad
Grid Location _4M
Tape Number \qquad
Inspection Date_ $8 / 18 / 99$ (754)
Diameter 42
Material(circle one)
Installation Date \qquad
Upstream Manhole 4 moll
Dnstream Manhole \qquad
Total Length of Survey \qquad 741

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100	0	-	-	$25)$.	C
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T - turbulent
L- laminar
Q - quiescent
General Notes:

$$
\begin{aligned}
& \text { Als connie - Nuphlly move semi and } \\
& \text { plashing }
\end{aligned}
$$

Defect Report

Footage	Feature	Notes
503		god Mut
20	$\mu_{\text {t }}$	
20		

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location $4 N, 4 M$
Tape Number M144 Inspection Date $\quad 8 / 19 / 99$ (735)

Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other CP ス
Installation Date
Upstream Manhole \qquad
Dnstream Manhole \qquad
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	0	-	-	257.	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:
T -turbulent
L - laminar
Q - quiescent
General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location $\quad 4 \mathrm{~N}$
Tape Number $\quad M / 44$
Inspection Date_ $\quad 8 / 17 / 00 \quad$ (LaO)
Diameter \qquad $42 ゙$
Material(circle one) PVC, Clay, Concrete, Other \qquad CPR
Installation Date
Upstream Manhole \qquad
Dnstream Manhole $4 \mathrm{NO} / 4$
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	0	-	-	257.	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T - turbulent
L-laminar
Q - quiescent
General Notes:

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location $\quad 5 \angle$

Tape Number M/44
Inspection Date $\quad 8 / 26 / 99 \quad(644 / 4)$
Diameter $4 B$
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date \qquad
Upstream Manhole \qquad
Dnstream Manhole $5 \angle 050$

Total Length of Survey $\quad 645$
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50				30 3.	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: $\quad \mathrm{T}$-turbulent
L - laminar
Q - quiescent
General Notes:
\qquad
foggy lens

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location_ 5 L

Tape Number _M/44
Inspection Date__? $(710 / 4)$
Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other_CDX
Installation Date
Upstream Manhole SLO53
Dnstream Manhole_ (5LOLR??)
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream), Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	1			40	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: $\quad \mathrm{T}$ - turbulent
L- laminar
Q - quiescent
General Notes:
appurcting lave 2 canotoon
\qquad
\qquad
\qquad
\qquad \longrightarrow

Defect Report

Little Rock Wastewater Utility Plant

 Sewer Video Evaluation FormArea
Grid Location Sc
Tape Number \qquad Inspection Date_ $8 / 26 / 99 \quad(209 / t)$

Diameter $48^{\prime \prime}$
Material(circle one) PVC, Clay, Concrete, Other \qquad
Installation Date
Upstream Manhole \qquad
Dnstream Manhole SLOS3
Total Length of Survey \qquad 208

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50				407.	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:	T-turbulent
	L- laminar
Q-quiescent	

Defect Report

Footage	Feature	Notes
215	$M H$	CaGnt Cordos

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location \qquad
Tape Number M144
Inspection Date__ $8 / 30 / 99 \quad$ (603 HF)
Diameter 48
Material(circle one) PVC, Clay, Concrete, Other_CPR Installation Date \qquad
Upstream Manhole $10<009$
Dnstream Manhole_ $10<00 D_{0}$
Total Length of Survey \qquad 594

Survey Dir.(circle one) Upstream \rightarrow Dnstream , Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	1	-	-	307.	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:	T-turbulent L-laminar Q-quiescent
General Notes:	

heary count/shemi loyer
lught varts

Defect Report

Footage	Feature	Notes
		M
594		

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area \qquad
Grid Location_ OM
Tape Number M/46 Inspection Date_ $9 / 2 / 99$ (249)

Diameter
24
Material(circle one) PVC, Clay, Concrete, Other \qquad CPR
Installation Date \qquad
Upstream Manhole_ OMO52
Dnstream Manhole_ OMO29
Total Length of Survey \qquad 214

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: \quad	$\mathrm{T}-$ turbulent
$\mathrm{L}-\operatorname{laminar}$	
$\mathrm{Q}-$ quiescent	

General Notes:

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location OM

Tape Number M/46
Inspection Date_ $9 / 2 / 99 \quad 46 \mathrm{ft}$
Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other_ CPR
Installation Date \qquad
Upstream Manhole OMO53
Dnstream Manhole OMOS2 \qquad
Total Length of Survey \qquad 485

Survey Dir.(circle one) Upstream \rightarrow Dnstream), Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:	T-turbulent
	L- laminar
	Q - quiescent

General Notes:
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad \longrightarrow

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location \qquad
Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date \qquad
Upstream Manhole_OMO54
Dnstream Manhole $0 M 053$

Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstreatn, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: $\quad T$-turbulent
 L - laminar
 Q - quiescent

General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant
 Sewer Video Evaluation Form

Area
Grid Location
Tape Number \qquad Inspection Date 9/2/99

Diameter
24
Material(circle one) PVC, Clay, Concrete, Other \qquad
Upstream Manhole \qquad
Dnstream Manhole \qquad
Total Length of Survey \qquad

Survey Dir.(circle one) Upstream \rightarrow Dnstream , Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

General Notes:

Ale conation

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location \qquad OM
Tape Number M146 Inspection Date_ $9 / 2 / 99 \quad(122 / 1)$

Diameter \qquad 24
Material(circle one) PVC, Clay, Concrete, Other_ CPR
Installation Date
Upstream Manhole $0 M 055$
Dnstream Manhole OM O 54

Total Length of Survey \qquad 168

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: | T-turbulent |
| :--- |
| |
| |
| |
| L- laminar |
| Q - quiescent |

General Notes:

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area \qquad
Grid Location \qquad
Tape Number \qquad Inspection Date \qquad
Diameter 24
Material(circle one) PVC, Clay, Concrete, Other \qquad
Upstream Manhole OMO 55 Dnstream Manhole man 054

Total Length of Survey \qquad Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

General Notes:
Nesh Cimaing

Defect Report

Footage	Feature	Notes
10	Alobis	larys furp
80	delris	

Little Rock Wastewater Utility Plant

Sewer Video Evaluation Form

Area \qquad SW
Grid Location OM
Tape Number M/4C
Inspection Date $\quad 9 / 2 / 95 \quad(194)$
Diameter 24
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date
Upstream Manhole OMO56
Dnstream Manhole_ OM OS5

Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream , Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T-turbulent
 L- laminar
 Q - quiescent
 General Notes:

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant

Sewer Video Evaluation Form

Area
Grid Location
Tape Number \qquad Inspection Date \qquad
Diameter 24
Material(circle one) PVC, Clay, Concrete, Other 0.2

Upstream Manhole \qquad
Dnstream Manhole \qquad
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstrean , Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0	0			Low r /act	/lard
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

General Notes:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location \qquad
Tape Number \qquad
Inspection Date

Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other CPR
Installation Date
Upstream Manhole ONOOI
Dnstream Manhole \qquad

Total Length of Survey \qquad $56:$

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:	T - turbulent
L - laminar	
$\mathrm{Q}-$ quiescent	

General Notes:

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location ON
Tape Number \qquad
Inspection Date $\quad 9 / 7 / 99 \quad$ (720)
Diameter 36
Material(circle one) PVC, Clay, Concrete, Other \qquad CPR
Installation Date \qquad
Upstream Manhole ONDOZ
Dnstream Manhole_ ONOO/
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: | T-turbulent |
| :--- |
| |
| |
| L-laminar |
| Q-quiescent |

General Notes:

General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area \qquad
Grid Location ON
Tape Number_M/4l
Inspection Date 9/7/99 596

* Diameter 36
Material(circle one) PVC, Clay, Concrete, Other \qquad $C P 2$
Installation Date
Upstream Manhole ONOO3
Dnstream Manhole_ ONO OZ
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T-turbulent
 L - laminar
 Q - quiescent

General Notes:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location_ ON
Tape Number $\quad M / 4 l$
Inspection Date \qquad
Diameter 26
Material(circle one) PVC, Clay, Concrete, Other \qquad
 Installation Date
Upstream Manhole \qquad
Dnstream Manhole \qquad
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

)

$$
\begin{array}{ll}
\text { Velocity: } & \mathrm{T} \text { - turbulent } \\
& \mathrm{L} \text { - laminar } \\
& \mathrm{Q} \text { - quiescent }
\end{array}
$$

General Notes:

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant

Sewer Video Evaluation Form

Area bubs brutal
Grid Location \qquad
Tape Number \qquad
Inspection Date

Diameter 42
Material(circle one) PVC, Clay, Concrete, Other \qquad Upstream Manhole \qquad Dnstream Manhole \qquad
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream , Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

General Notes:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow

Defect Report

Footage	Feature	Notes
74	INail come	a
	Areas	ai comen cilior
	patsh	
	fooveng	
-		
		.

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location $7 c$
Tape Number \qquad $M 146$
Inspection Date
9/1/99 561 pt

Diameter 42
Material(circle one) PVC, Clay, Concrete, Other \qquad
Installation Date \qquad
Upstream Manhole 7.2005

Dnstream Manhole 20008

Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:	$\mathrm{T}-$ turbulent
	L - laminar
	$\mathrm{Q}-$ quiescent

General Notes:

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant
 Sewer Video Evaluation Form

Area \qquad P) REBSNMER TRUNK Grid Location \qquad
Tape Number \qquad 14
Inspection Date \qquad 30

Diameter \square "
Material(circle one) PVC, Clay, Concrete, Other \qquad Upstream Manhole \qquad
Dnstream Manhole \qquad
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream , Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

General Notes:

Defect Report

Little Rock Wastewater Utility Plant

Sewer Video Evaluation Form

Area
Grid Location_ $\quad 7$
Tape Number \qquad
Inspection Date
9/1/99 347 ft
Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other_ C \quad,
Installation Date
Upstream Manhole $\quad 7$ C006
Dnstream Manhole \qquad
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T-turbulent
 L- laminar
 Q - quiescent
 General Notes:

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant

 Sewer Video Evaluation FormArea \qquad
Grid Location \qquad
Tape Number \qquad Inspection Date \qquad
Diameter 42
Material(circle one) PVC, Clay, Concrete, Other \qquad Upstream Manhole \qquad Dnstream Manhole \qquad
Total Length of Survey \qquad

Survey Dir.(circle one) Upstream \rightarrow Dnstream , Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0	Z	-	-	QD 2D 7. Q	-
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

General Notes:

Crom heyway - evelewes of conrevin

Defect Report

Footage	Feature	Notes
	Rught licur	
$3 l$ d		

Little Rock Wastewater Utility Plant

Sewer Video Evaluation Form

Area UPSTREAM OF ${ }^{\text {Al }} 1$
Tape Number M/46
Inspection Date_ $9 / 1 / 99 \quad 385$
Diameter 42
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date
Upstream Manhole $\quad 7 \mathrm{COOT}$
Dnstream Manhole $\quad 7 \mathrm{CDO} 6$

Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: $\quad \mathrm{T}$-turbulent
L - laminar
Q-quiescent
General Notes:

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area

Grid Location	$9 K$
Tape Number	$9 / 4 C$
Inspection Date	$8 / 3 / 99$
	(6)

Diameter 48
Material(circle one) PVC, Clay, Concrete, Other_ CPR Installation Date
Upstream Manhole $9 K 007$
Dnstream Manhole $\quad 9 \angle \theta / \tau$ \qquad
Total Length of Survey \qquad 163

Survey Dir.(circle one) Upstream \rightarrow Dnstrean, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

)

Velocity: \quad| T-turbulent |
| :--- |
| |
| |
| |
| L-laminar |
| Quiescent |

General Notes:
\qquad
\qquad \longrightarrow
\qquad \longrightarrow \longrightarrow
\qquad
\qquad

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location \qquad
Tape Number 146 Inspection Date \qquad
Diameter 48
Material(circle one) PVC, Clay, Concrete, Other
Upstream Manhole_ \quad K 007
Dnstream Manhole Drone qLoIr
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream), Dnstream \rightarrow Upstream

50 Foot Inspection Log

General Notes:

spring levi consume

Defect Report

Little Rock Wastewater Utility Plant

Sewer Video Evaluation Form

Area \qquad
Grid Location $9 K$
Tape Number 17146
Inspection Date $8 / 31 / 99$ 466

Diameter 48
Material(circle one) PVC, Clay, Concrete, Other \qquad CPR Installation Date
Upstream Manhole \qquad
$7 K 00:$
Dnstream Manhole_ $\quad \rightarrow 0007$
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: $\quad T$-turbulent
 L- laminar
 Q - quiescent
 General Notes:

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

\qquad $\left(\begin{array}{ccc}\text { VidEo } & 2 \text { 7/men } \\ & 409 . \text { full }\end{array}\right)$
Tape Number \qquad
Inspection Date \qquad $8 / 3 / 199$

Diameter $40^{\prime \prime}$
\qquad
Material(circle one) PVC, Clay, Concrete, Other \qquad
Upstream Manhole \qquad
Dnstream Manhole \qquad
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Debris	Flow Depth		Lining
0	$2+$	$?$	$1 / 4$	Q	Antone?
50					Cont al??
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

* EEET shit condition WORST CDIN/TMN

Defect Report

Verify cottony type if any?

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area \qquad
Grid Location \qquad
Tape Number \qquad
Inspection Date \qquad

Diameter
Material(circle one) PVC, Clay, Concrete, Other \qquad
Upstream Manhole 9 KODB
Dnstream Manhole_ $2 K 007$
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream , Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

General Notes:

Defect Report

Footage	Feature	Notes

$$
\text { NORTH GD } 1-
$$

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area \qquad UPSNXEAN OF HT C
Grid Location \qquad
Tape Number $M / 46$
Inspection Date \qquad
Diameter $48^{\prime \prime}$
Material(circle one) PVC, Clay, Concrete, Other CPR Installation Date
Upstream Manhole $9 K 009$
Dnstream Manhole \quad TKO \qquad
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:	T - turbulent
L - laminar	
$\mathrm{Q}-$ quiescent	

General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant

Area \qquad
Grid Location \qquad a of \#
Tape Number 146
Inspection Date $8-3 /-99$

Diameter \qquad 48
Material(circle one) PVC, Clay, Concrete, Other \qquad Upstream Manhole ouolz
\qquad
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0	2	-	-	40%	Q
50					Noun
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

General Notes:

Sues has water youth ' Curdy

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area

Grid Location	$O L$
Tape Number	$M / 46$
Inspection Date	$8 / 31 / 99$
	356

Diameter
Material(circle one) PVC, Clay, Concrete, Other Cアス Installation Date \qquad
Upstream Manhole $960 / 2$
Dnstream Manhole_GLDII
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:	$\mathrm{T}-$ turbulent $\mathrm{L}-$ laminar $\mathrm{Q}-$ quiescent
General Notes:	

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location 80
Tape Number 11147
Inspection Date_ $\quad 9 / 8 / 99 \quad$ (550)
Diameter
Material(circle one) PVC, Clay, Concrete, Other \qquad
Installation Date
Upstream Manhole $8000=$
Dnstream Manhole 81002

Total Length of Survey \qquad
Survey Dir.(circle one) upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	1	-	-	Z_{0} ?. $-\quad L$	-
100					
150					
200					
250					
300					
350					
400					
450					
500					
$550 \quad 549$	1	-	-	20.	
600					

```
Velocity: T-turbulent
    L - laminar
    Q - quiescent
General Notes:
```


Foggy lens

Defect Report

Little Rock Wastewater Utility Plant

 Sewer Video Evaluation FormArea
Grid Location 80
Tape Number
\qquad
\qquad
Inspection Date \qquad
Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date
Upstream Manhole \qquad
Dnstream Manhole \qquad
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0	$/$	-	-	$207 .-L$	-
50	1	-	-	$20 \geqslant-\quad$.	-
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600	En/J				
693					

Velocity: T - turbulent
L - laminar
Q - quiescent
General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Little Rock Wastewater Utility Plant

Sewer Video Evaluation Form

Area \qquad
Grid Location \qquad
Tape Number M 147
Inspection Date \qquad $9 / 8 / 29$

Diameter 42
Material(circle one) PVC, Clay, Concrete, Other \qquad $C P R$ Installation Date \qquad Upstream Manhole \qquad
Dnstream Manhole
80006
Total Length of Survey \qquad 513

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Velocity:
T -turbulent
L - laminar
Q - quiescent
General Notes:
good couditum:
Nuytr semi layer
Pouts an shyster visible

Defect Report

Little Rock Wastewater Utility Plant
 Sewer Video Evaluation Form

Area \qquad
Grid Location \qquad TE
Tape Number M147
Inspection Date_ $\quad 7 / 9 / 99 \quad 407 / 1$
Diameter 42
Material(circle one) PVC, Clay , Concrete , Other \qquad
Installation Date \qquad
Upstream Manhole GEOOZ
Dnstream Manhole_ GEO 43
Total Length of Survey \qquad 407

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	1	-	-	20%	-
100					-
150					
200					
250					
300					
350					
400					
-450	END				
-500					
500					
600					

Velocity:	$\mathrm{T}-$ turbulent
	$\mathrm{L}-$ laminar
	$\mathrm{Q}-$ quiescent

General Notes:
\qquad

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location \qquad
Tape Number \qquad
Inspection Date $9 / 5 / 99 \quad(826)$
Diameter
\qquad
\qquad 42
Material(circle one) PVC, Clay, Concrete, Other \qquad $C P R$
Installation Date \qquad
Upstream Manhole_ $9 E O / Z$
Dnstream Manhole TE O/9
Total Length of Survey \qquad 815

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	1	-	-	20	
100					-
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					
$8 / 2$					

Velocity:	T -turbulent
	L - laminar
Q -quiescent	
General Notes:	

fog y han

Defect Report

)

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location_ \quad IE , OF
Tape Number \qquad
Inspection Date_ $\quad 3 / 13 / 99$ (450 Ht)
Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other_CPX
Installation Date
Upstream Manhole GEO 19
Dnstream Manhole \quad _ $\subset / /$
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	1	-	-	$309 .-L$	-
100					
150					
200					
250					
300					
350					
400					
-450					
500					
550					
600					

Velocity:	T - turbulent
	$\mathrm{L}-$ laminar
	$\mathrm{Q}-$ quiescent

General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes
293	V. Mnd	hyhn V.
37/	MH?	
408	Conmetion	11:00 FLOWING
		N:00 I Cunde
405	MPY?	

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location
GE

Tape Number \qquad Inspection Date $\quad 9 / 9 / 99 \quad 41814$

Diameter 42
Material(circle one) PVC, Clay, Concrete, Other \qquad
Installation Date
Upstream Manhole \square
Dnstream Manhole \qquad
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream , Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100	1	-	-	$307 .-$	-
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:	T-turbulent
	L - laminar
	$\mathrm{Q}-$ quiescent

General Notes:

\qquad
Foggy lens

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area \qquad

Grid Location	$9 F$
Tape Number	$M / 47$
Inspection Date	$9 / 13 / 99$

Diameter 42
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date \qquad
Upstream Manhole \qquad
Dnstream Manhole_ 9501 に
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0	1	-	-	L	
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:	$\mathrm{T}-$ turbulent
	L - laminar
	$\mathrm{Q}-$ quiescent

General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes
0-30	DENS	
30	MH	G00) Convoltiow
*		

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location
SF

Tape Number 1717
Inspection Date_ $9 / 13 / 99 \quad(293$ ft)
Diameter \qquad $42 "$
Material(circle one) PVC, Clay, Concrete, Other_CPX
\qquad
Material(circle one) PVC, Clay, Concrete, Other_CPX
Installation Date
Upstream Manhole 7 FOIl
Dnstream Manhole GF009

Total Length of Survey \qquad 3

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50		-	-	$2 \cup 2$	L
100					-
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: $\quad T$-turbulent
L - laminar
Q - quiescent
General Notes:

Defect Report

Little Rock Wastewater Utility Plant

 Sewer Video Evaluation FormArea
Grid Location \qquad
Tape Number \qquad
Inspection Date_ $9 / 13 / 99 \quad 667 / 4$
Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date \qquad
Upstream Manhole \qquad
Dnstream Manhole_ 9 FO 013
Total Length of Survey \qquad 674

Survey Dir.(circle one) Upstream \rightarrow Dnstream , Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	1	-	-	20	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T - turbulent
L- laminar
Q - quiescent
General Notes:

CAMERA NEED O-1.40
Slow, pull, seven stops
Foggy lem

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location $\quad 9 F$
Tape Number \qquad
Inspection Date

Diameter 42
Material(circle one) PVC, Clay, Concrete, Other \qquad
Installation Date
Upstream Manhole \quad IF ORB
Dnstream Manhole 95011

Total Length of Survey \qquad 262

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0	1	-	-	25%	-
50					
100	1			30%	
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:	$\mathrm{T}-$ turbulent
	$\mathrm{L}-$ laminar
	$\mathrm{Q}-$ quiescent

General Notes:

Pray ln s

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location
oF

Tape Number \qquad
Inspection Date \qquad $9 / 13 / 99$ 287 f

Diameter 42
Material(circle one) PVC, Clay, Concrete, Other_ $\subset \mathcal{X}$ Installation Date \qquad
Upstream Manhole
$9 F 016$

Dnstream Manhole_ $9 F 0 / 8$ \qquad
Total Length of Survey_ 288
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50		-	-	$つ 0$	
100					-
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

$$
\begin{array}{ll}
& \\
\text { Velocity: } & \mathrm{T}-\text { turbulent } \\
\mathrm{L}-\text { laminar } \\
\text { Q - quiescent }
\end{array}
$$

General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location OF
Tape Number M147
Inspection Date_ $9 / 14 / 99 \quad(: 41 \mathrm{ft})$
Diameter $42 "$
Material(circle one) PVC, Clay, Concrete, Other_ CPR
Installation Date
Upstream Manhole \qquad
Dnstream Manhole
$9 F O 22$

Total Length of Survey 837

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50		-	-	$20 \eta_{r}$	-
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:
T -turbulent
L- laminar
Q - quiescent
General Notes:
\qquad
3 flow long en paps
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location \qquad
Tape Number \qquad
Inspection Date \qquad 99 336 f

* Diameter \qquad 30
Material(circle one) PVC, Clay, Concrete, Other_ CPR Installation Date
Upstream Manhole 4B001
Dnstream Manhole $4 B 00$ 2
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	2	$\lambda_{1} R_{1 B 3}$	-	$50)$	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:
T - turbulent
L- laminar
Q -quiescent
General Notes:
\qquad
Moo FOG - Gris View
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes
248	NeAt ramen	$?$
278		
330		

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location $4 B$

Tape Number $\quad / 1 / \& 8$
$9 / 16 / 99$ Inspection Date $\quad 1 / / 2 / 95 \quad$ LS 1 A
Diameter
$30^{\prime \prime}$
Material(circle one) PVC, Clay, Concrete, Other_ CPR
Installation Date \qquad
Upstream Manhole 43002
Dnstream Manhole $4 B 003$
Total Length of Survey \qquad 647

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0				50	.
50			RiBs		
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:	T -turbulent
L -laminar	
Q -quiescent	
	General Notes:

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location \qquad
Tape Number M148
Inspection Date \qquad $9 / 16 / 99$ zen ft

Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other \qquad
Installation Date
Upstream Manhole_ $4 B 003$
Dnstream Manhole_ $4 B 004$
Total Length of Survey 299

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0				257.	L
50	2	$\bar{Z}_{l 25}$			
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T - turbulent
 L - laminar
 Q - quiescent
 General Notes:

Low Flow

Defect Report

Footage	Feature	Notes
299		$30 \times$

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location \qquad
Tape Number M/48
Inspection Date_ $9 / 16 / 99342$ ft
Diameter $30^{\prime \prime}$
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date
Upstream Manhole_ $4 B O D 4$
Dnstream Manhole_ $4 B 005$
Total Length of Survey \qquad
Survey Dir.(circle one) upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50				25 ?.	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

)

Defect Report

Little Rock Wastewater Utility Plant

Sewer Video Evaluation Form

Area
Grid Location $\quad 4 B$
Tape Number M/48
Inspection Date_ $9 / 19 / 99$ 471/4
Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other C $C \mathcal{P}$
Installation Date
Upstream Manhole $4 B 005$
Dnstream Manhole_ $4 B 006$
Total Length of Survey \qquad 467

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	2			Co	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:	T-turbulent
L-laminar	
Q-quiescent	
General Notes:	

\qquad
\qquad
\qquad
\longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant

Sewer Video Evaluation Form

Area
Grid Location \qquad $4 B, 4 C$
Tape Number M148
Inspection Date_ $9 / 20 / 99385$
Diameter 30
Material(circle one) PVC, Clay, Concrete, Other_ CDR Installation Date
Upstream Manhole 43006
Dnstream Manhole $4 C O \& 1$

Total Length of Survey \qquad

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining						
0											
50								RiB		ID	
100											
150											
200											
250											
300											
350											
400											
450											
500											
550											
600											

Velocity:	$T-$ turbulent
	L-laminar
Q - quiescent	

Defect Report

Little Rock Wastewater Utility Plant
 Sewer Video Evaluation Form

Area
Grid Location

$$
4 c, 5 c
$$

$$
9 / 20 / 95 \quad \begin{aligned}
& \text { Tape Number } \quad 11 / 48 \\
& \text { Inspection Date_ } 1 / / 3 / 95 \\
& 2
\end{aligned}
$$

Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other_ CPR
Installation Date
Upstream Manhole \qquad $4 C 041$
Dnstream Manhole \qquad
Total Length of Survey \qquad 278

Survey Dir.(circle one) stream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	2	$R 135$		257.	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: $\quad \mathrm{T}$-turbulent
L - laminar
Q - quiescent
General Notes:

Defect Report

Footage	Feature	Notes
256		

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location_ 5 C

Tape Number_M/48
Inspection Date $9 / 20 / 99$ 106 ft
Diameter ≥ 0
Material(circle one) PVC, Clay, Concrete, Other_CPX Installation Date
Upstream Manhole 5 COO1
Dnstream Manhole_ 5 COOZ
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50				25	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

r

Velocity:	T - turbulent
	L - laminar
	Q - quiescent

General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant

Sewer Video Evaluation Form

Area
Grid Location \qquad 1148
Tape Number \qquad
Inspection Date
$9 / 20 / 99$ $412 / t$

Diameter \qquad 30
Material(circle one) PVC, Clay, Concrete, Other _C
Installation Date \qquad
Upstream Manhole \qquad
Dnstream Manhole_ 5C003
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					L
50	2	R 125		no 7.	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

$$
\begin{array}{ll}
\text { Velocity: } & \begin{array}{l}
\mathrm{T} \text { - turbulent } \\
\mathrm{L}-\text { laminar } \\
\mathrm{Q}-\text { quiescent }
\end{array} \\
\text { General Notes: }
\end{array}
$$

Defect Report

Footage	Feature	Notes
$4 / 2$		

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location_ 5 C
Tape Number \qquad
Inspection Date \qquad
Diameter 80
Material(circle one) PVC, Clay, Concrete, Other cpr Installation Date \qquad
Upstream Manhole \qquad $5 \mathrm{COO}=$
Dnstream Manhole \qquad 4

Total Length of Survey \qquad 496

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	2	ス185		217.	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

7

Velocity:	$\mathrm{T}-$ turbulent
	$\mathrm{L}-$ laminar
	$\mathrm{Q}-$ quiescent

General Notes:

Defect Report

Footage	Feature	Notes
352	C2000	Viens
495	MIt	Cnter

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location SC
Tape Number M148
Inspection Date_ $9 / 20 / 99500 \mathrm{ft}$
Diameter 30
Material(circle one) PVC, Clay, Concrete, Other \qquad
Installation Date
Upstream Manhole_ 5c004
Dnstream Manhole_ 5C00 5
Total Length of Survey_ 504
Survey Dir.(circle one) Upstream \rightarrow Dnstream Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rear	Debris	Flow Depth -Velocity	Lining
0					
50	C	ス1ß		C_{0}	7.
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:	$\mathrm{T}-$ turbulent
	L - laminar
	$\mathrm{Q}-$ quiescent

General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes
Alo SV4	GO(1) VIEW	
54	MIt A0X	MIT CMED COMTED :
	-	
		'

Little Rock Wastewater Utility Plant

Sewer Video Evaluation Form

Area \qquad
Grid Location
CC

Tape Number M/48 Inspection Date_ $\quad 9 / 15 / 99 \quad s / t$

* Diameter \qquad 36
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date \qquad Upstream Manhole \qquad
Dnstream Manhole \qquad 6CDO3

Total Length of Survey \qquad 8

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rear	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T - turbulent
L - laminar
Q - quiescent
General Notes:

Ale forty. - own g ore sha of commectioni
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location_ $6 C$
Tape Number_ $\nVdash 48$
Inspection Date_
Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other CPR Installation Date \qquad
Upstream Manhole \qquad
Dnstream Manhole $6 \operatorname{coD} 4$

Total Length of Survey \qquad 497

Survey Dir.(circle one) Upstream \rightarrow Dnstream Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	$/$	-	-	Co.$~$	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T - turbulent
L- laminar
Q - quiescent
General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Little Rock Wastewater Utility Plant

Sewer Video Evaluation Form

Area
Grid Location \qquad
Tape Number $M / 48$
Inspection Date \qquad $9 / 15 / 99$ 649 ft

Diameter 42
Material(circle one) PVC, Clay , Concrete, Other \qquad Installation Date \qquad
Upstream Manhole 6 CoOt
Dnstream Manhole _6C005
Total Length of Survey \qquad 647

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	1	-	-	20%	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T - turbulent
L - laminar
Q - quiescent
General Notes:
\qquad
Fry9y

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location_ $C C, 7 C$
$9 / 15 / 99 \quad \begin{array}{ll}\text { Tape Number } & M 148 \\ \text { Inspection Date } & 8 / 2 z / 9 C \quad(1072 / *)\end{array}$
Diameter 42
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date \qquad LPN? Upstream Manhole \qquad $6 \mathrm{COO5}$
Dnstream Manhole_ 7 COO
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

SOWN IS VISIBLE
Fogey

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location_ $8 C, 8 D$
Tape Number $\quad M / 48$
Inspection Date 9/14/99 $(426 f t)$
Diameter 42
Material(circle one) PVC, Clay, Concrete, Other \qquad $0,2 \pi$
Installation Date \qquad
Upstream Manhole \qquad
Dnstream Manhole \qquad
\qquad
Total Length of Survey \qquad 423

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Velocity:
T -turbulent
L - laminar
Q - quiescent
General Notes:
Fogey
how flow deny Taping
appears t los wows on left sob le pye? can 'A Nu "ribs"

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area

Grid Location	$8 D$
Tape Number	$M / 48$
Inspection Date	$9 / 14 / 99$
$84 / 4)$	

Diameter 42
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date \qquad
Upstream Manhole_ 80094
Dnstream Manhole - $\quad 00096$
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					L
50				20	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:
T-turbulent
L - laminar
Q - quiescent
General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes
84	DEALD	
105	MH	$12=00$
-		

Little Rock Wastewater Utility Plant

Sewer Video Evaluation Form

Area
Grid Location_ $\quad 2 B$
Tape Number_ $\quad / 149$
Inspection Date_ $10 / 5 / 99 \quad 511 \mathrm{ft}$

* Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other_LNEK Installation Date
Upstream Manhole 2B004
Dnstream Manhole_ 20005
Total Length of Survey 508

Survey Dir.(circle one) Upstream \rightarrow Dnstream , Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	0			25).	न
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:	$\mathrm{T}-$ turbulent
	$\mathrm{L}-$ laminar
	$\mathrm{Q}-$ quiescent

General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes
78	grod Viur	\square
	pown	
514	DRKK nut	Ml Comneri

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location \qquad
Tape Number M149
Inspection Date \qquad $10 / 5 / 59 \quad 102$ f

Diameter 30
Material(circle one) PVC, Clay, Concrete, Other_ LINER Installation Date
Upstream Manhole _2005
Dnstream Manhole_ בC00
Total Length of Survey \qquad 6

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	2			75	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:
T -turbulent
L- laminar
Q - quiescent
General Notes:
\qquad
\qquad
Camber Tilted
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes
		lBs ? ? ?

Little Rock Wastewater Utility Plant

Sewer Video Evaluation Form

Area
Grid Location $\quad 38$
Tape Number $\quad 1149$
Inspection Date \qquad 341 ft

Diameter 30
Material(circle one) PVC, Clay, Concrete, Other \qquad
Installation Date \qquad
Upstream Manhole 38001
Dnstream Manhole 38002 \qquad
Total Length of Survey __329
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	2			$\left.2_{1}\right)_{c}$	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:
T- turbulent
L - laminar
Q - quiescent
General Notes:
\qquad
Cement tilted \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location 36
Tape Number \qquad
Inspection Date_ $10 / 6 / 99 \quad 453$ ft
Diameter 30
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date
Upstream Manhole_ 30002
Dnstream Manhole $\quad 38003$
Total Length of Survey \qquad
Survey Dir.(circle one) stream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					L
50	2	RIBS		Z_{0}	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:	T-turbulent
L-laminar	
Q-quiescent	

General Notes:

General Notes:

Defect Report

Footage	Feature	Notes
		Cunh?
	M/h	

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location_ 3β

Tape Number _M149
Inspection Date \qquad 10/6/99 \qquad 627 ft

Diameter 30
Material(circle one) PVC, Clay, Concrete, Other \qquad $C P R$
Installation Date
Upstream Manhole 38003
Dnstream Manhole_ 38004
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstrean, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					L
50	乙	尺125		Z. 3.	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T - turbulent
L - laminar
Q - quiescent
General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

$$
\text { REBSAMEN } 1-3
$$

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location \qquad
Tape Number \qquad $11 / 49$

Diameter \qquad 30
Material(circle one) PVC, Clay, Concrete, Other_ CPR Installation Date \qquad
Upstream Manhole_5COOS Dnstream Manhole 5600 l

Total Length of Survey \qquad 728

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	2	FIRS		15	つ.
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

\qquad

Defect Report

Little Rock Wastewater Utility Plant
 Sewer Video Evaluation Form

Area
Grid Location_ $5 c, \quad 6 C$
Tape Number $\quad M / 49$
9/21/99 Inspection Date \qquad $/ 95 \quad 520$

Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other_C C \quad R
Installation Date \qquad
Upstream Manhole 5 COOC
Dnstream Manhole_ CCOOI
Total Length of Survey_ $5 / 4$
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	2	2		157	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:	T-turbulent
	L - laminar
	Q - quiescent
General	

General Notes:

Defect Report

Footage	Feature	Notes
160	(row) ViEw	
357	Conviction	3:00 16. Frow
$5 / 4$	MH	
	.	

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location \qquad
Tape Number $M / 49$
912199^{9}
Inspection Date \qquad
Diameter \qquad 30
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date \qquad
Upstream Manhole \qquad
Dnstream Manhole \qquad
Total Length of Survey \qquad

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	τ	35		15	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T-turbulent
L - laminar
Q - quiescent
General Notes:

Defect Report

Footage	Feature	Notes
330°		
385		Tentulat

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location \qquad
Tape Number 17149
Inspection Date_ $9 / 23 / 99 \quad 546$ ft

* Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other_ CPR Installation Date
Upstream Manhole _13G001
Dnstream Manhole_13GOO2
Total Length of Survey \qquad 538

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					$乙_{0}$).
100				L	
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T - turbulent
L - laminar
Q - quiescent
General Notes:
Froggy Tope

Defect Report

Little Rock Wastewater Utility Plant

Sewer Video Evaluation Form

Area
Grid Location $\quad 13 G$
Tape Number_M/49
Inspection Date_ $2 / 23 / 99 \quad 207$ ft
Diameter
Material(circle one) PVC, Clay, Concrete, Other_ $C P \lambda$ Installation Date
Upstream Manhole__KGOOE
Dnstream Manhole_ is 003

Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream , Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	1			こU).	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:
T -turbulent
L- laminar
Q -quiescent
General Notes:

Tor Foray

Defect Report

Footage	Feature	Notes
		1200
		$16 \quad$ Cunnuri

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location _/3G
Tape Number $\quad M / 49$
Inspection Date _o/23/99 $1 / 6 / 1$
Diameter \qquad "
Material(circle one) PVC, Clay, Concrete, Other \qquad CPR Installation Date \qquad
Upstream Manhole \qquad
Dnstream Manhole_ 136004
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream ,Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					209.
100				C	
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: $\quad \mathrm{T}$ - turbulent
L - laminar
Q - quiescent
General Notes:

Defect Report

Footage	Feature	Notes
112	REW)	Goos View
ENS		

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location \qquad
Tape Number \qquad
Inspection Date $\quad 0 / 23 / 59 \quad 843 / 4$
Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other \qquad
Installation Date
Upstream Manhole_15GOO2

Total Length of Survey \qquad 843

Survey Dir.(circle one) Upstream \rightarrow Dnstream , Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50				$Z_{1} 7$.	L
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:
T -turbulent
L - laminar
Q - quiescent
General Notes:
\qquad
Foggy
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location \qquad
Tape Number \qquad Inspection Date_ 9/27/99 le li g ft
Diameter \qquad "
Material(circle one) PVC, Clay, Concrete, Other $C P R$ Installation Date
Upstream Manhole _15G013
Dnstream Manhole__15G0/4
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50				15	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

$$
\begin{array}{lr}
\text { Velocity: } & \begin{array}{l}
\text { T -turbulent } \\
\\
\text { L - laminar } \\
\text { Q - quiescent }
\end{array} \\
\text { General Notes: }
\end{array}
$$

\qquad Foggy
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes
	780	

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area \qquad
Grid Location_ $/ 5 \mathrm{G}, 15 \mathrm{H}$
Tape Number M/49 Inspection Date $9 / 27 / 99 \quad 845 \mathrm{ft}$

Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other \qquad CPR Installation Date \qquad
Upstream Manhole \qquad
Dnstream Manhole \qquad
Total Length of Survey \qquad 248

Survey Dir.(circle one) Upstream \rightarrow Dnstreann, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0	2				
50	$/$			15	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T -turbulent
L - laminar
Q - quiescent
General Notes:
\qquad
Foggy

Defect Report

Little Rock Wastewater Utility Plant

Sewer Video Evaluation Form

Area
Grid Location \qquad $ル G, K H$
Tape Number M149
Inspection Date_ $9 / 27 / 99 \quad 694 \mathrm{ft}$

* Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other \qquad CPR Installation Date \qquad
Upstream Manhole_16G001
Dnstream Manhole_16 HOO1
Total Length of Survey \qquad 694

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream 50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	$0-1$			z_{0} つ.	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:	T - turbulent
L - laminar	
$\mathrm{Q}-$ quiescent	
	General Notes:

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location \qquad
Tape Number \qquad Inspection Date_ $9 / 27 / 99664 \mathrm{ft}$

Diameter \qquad Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date \qquad
Upstream Manhole \qquad
Dnstream Manhole \qquad

Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	$0-/$			Z_{0} つ,	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T - turbulent
L- laminar
Q - quiescent
General Notes:

fog gay

Defect Report

Footage	Feature	Notes
678	$M H$ Fr/	16 Cennurn

$$
\text { REBSAMEN } 5 \cdot 8
$$

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location
32

Tape Number \qquad Inspection Date
 $95 \times 698 \mathrm{ft}$ $10 / 6 / 99$

Diameter 30
Material(circle one) PVC, Clay, Concrete, Other \qquad CPR
Installation Date \qquad
Upstream Manhole \qquad
Dnstream Manhole_ $3 B 044$
Total Length of Survey \qquad
Survey Dir.(circle one)
Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					L
50	Z	R_{125}	-	乙V 7.	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T - turbulent
L- laminar
Q - quiescent
General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location 3

Tape Number BB
$10 / 6 / 99$
Inspection Date

Diameter 30
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date
Upstream Manhole 30005
Dnstream Manhole _30006
Total Length of Survey \qquad
\qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	2	-	-	2590	-
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T - turbulent
L - laminar
Q - quiescent
General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes
160		GOOD VIDED
200		Junction $\lambda 0 \times$
		人lo TURZuchフVCE

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location_ $3 B, 48$
Tape Number $\quad 1 / 150$
Inspection Date_10/2/99 5/5 H
Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date \qquad
Upstream Manhole_3006
Dnstream Manhole_ 48001
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					L
50	2	-	-	257.	-
100					
150					
200					
250					
300					
350	2			2.7.	
400					
450					
500					
550					
600					

Velocity:	T - turbulent
	L - laminar
	$\mathrm{Q}-$ quiescent

General Notes:

Defect Report

Little Rock Wastewater Utility Plant

Sewer Video Evaluation Form

Area
Grid Location \qquad $3 B$
Tape Number M150
Inspection Date _10/6/99 70/t
Diameter 30
Material(circle one) PVC, Clay, Concrete, Other \qquad
Installation Date
Upstream Manhole_ $\quad 30044$
Dnstream Manhole \qquad
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	2	-	-	25%	-
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

$$
\begin{array}{ll}
\text { Velocity: } & \mathrm{T}-\text { turbulent } \\
& \mathrm{L} \text { - laminar } \\
& \mathrm{Q}-\text { quiescent }
\end{array}
$$

General Notes:
\qquad \longrightarrow \longrightarrow -
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes
72	ENI M M	IUCKK

Little Rock Wastewater Utility Plant
 Sewer Video Evaluation Form

Area \qquad
Grid Location＿4m，4L
Tape Number M／50
Inspection Date \qquad
Diameter \qquad 42
Material（circle one）PVC，Clay，Concrete，Other \qquad CPR
Installation Date \qquad
Upstream Manhole＿4Moノて
Dnstream Manhole＿\＆ 4013
Total Length of Survey－ 655 34
Survey Dir．（circle one）Upstream \rightarrow Dnstream Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth－Velocity	Lining
0					
50		-	$\mathrm{N} / 厶$	λ / \quad FLu	-
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:	T-turbulent
	L - laminar
	$Q-$ quiescent

General Notes:
pule through bacturands

304 /1 $100 \pi 4$

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location 4M
Tape Number M/50
Inspection Date_ $10 / 2 / 99$
Diameter
42
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date \qquad
Upstream Manhole 4 MO 013
Dnstream Manhole _4MO/2
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	0	-	$\Lambda C_{\text {NV }}$	$4^{\prime \prime}$	-
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T - turbulent
L - laminar
Q - quiescent
General Notes:

Defect Report

Little Rock Wastewater Utility Plant
 Sewer Video Evaluation Form

Area

Grid Location	$4 M$
Tape Number	$M / 50$
Inspection Date	$8 / 18 / 99$
	$332 \neq 1$

Diameter_42"

Material(circle one) PVC, Clay, Concrete, Other_ CPR Installation Date \qquad
Upstream Manhole 4M014
Dnstream Manhole 4 MOD

Total Length of Survey \qquad

Survey Dir.(circle one) Upstream \rightarrow Dnstream Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100	0	-	NoNF	$4^{\prime \prime}($ N/s FLOW $)$	-
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: | T-turbulent |
| :--- |
| L-laminar |
| Q-quiescent |

General Notes:

$$
\begin{aligned}
& \text { Forpy lems } \\
& \text { Nur papi ? }
\end{aligned}
$$

Defect Report

Footage	Feature	Notes
126	DEBR/S $-L_{D G}$	
		Flakeny at croum a/puni
275		
300		

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location 5 L
Tape Number_ M/50
Inspection Date_ $10 / 4 / 99$ ft
Diameter 36
Material(circle one) PVC, Clay, Concrete, Other_ CPR
Installation Date
Upstream Manhole $5 \angle 052$
Dnstream Manhole_ 5L051
Total Length of Survey 297

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	0	-	-	$つ 0$	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

$$
\begin{array}{ll}
\text { Velocity: } & \mathrm{T}-\text { turbulent } \\
& \mathrm{L} \text { - laminar } \\
& \mathrm{Q}-\text { quiescent }
\end{array}
$$

General Notes:

Defect Report
NIONE

Footage	Feature	Notes

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location
Tape Number \qquad Inspection Date \qquad
Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date \qquad Upstream Manhole \qquad Dnstream Manhole \qquad SCO/51

Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50	0				
100					
150					
200					
250					
300					
350					
400					
450					
500					
650					
600					

Velocity:	T-turbulent
L-laminar	
Q-quiescent	

General Notes:

General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad

Defect Report

Footage	Feature	Notes

$$
\text { RIVERFRONT } 9-10
$$

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location 17 H
Tape Number M150
Inspection Date $10 / 7 / 99$ 299μ

Diameter \qquad 60
Material(circle one) PVC, Clay, Concrete, Other CPR
Installation Date \qquad
Upstream Manhole \qquad
Dnstream Manhole \qquad $171+003$ \qquad
Total Length of Survey \qquad 299 Survey Dir.(circle one) Upstream \rightarrow Dnstream , Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100	$1 ?$	-	-	257	L
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:
T-turbulent
L - laminar
Q - quiescent
General Notes:
\qquad
\qquad
Foggy lens
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area \qquad
Grid Location \qquad
Tape Number \qquad
Inspection Date \qquad
\qquad
Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date
Upstream Manhole \qquad Dnstream Manhole_ $17 H 004$

Total Length of Survey \qquad

Survey Dir.(circle one) Upstream \rightarrow Dnstream , Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50				$25 \% ?$	
100					
150	0				
200					
250					
300					
350					
400					
450					
$5005 / 6$					
550					
600					

Velocity:
T - turbulent
L - laminar
Q -quiescent
General Notes:
P999 - of of Bean ?

Defect Report

$$
\text { Brodie - HindmaN div } 7-9
$$

Little Rock Wastewater Utility Plant

 Sewer Video Evaluation FormArea
Grid Location_ 20

Tape Number \qquad
Inspection Date \qquad 67 ft

Diameter 24
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date Upstream Manhole \qquad
Dnstream Manhole \qquad
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0	0			Λl_{r} /low	
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: | T-turbulent |
| :--- |
| |
| |
| |
| L-laminar |
| Q-quiescent |

General Notes:

General Notes:

Defect Report

Footage	Feature	Notes
65	Juaner.	$130 x$
	-	

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location 20
Tape Number \qquad
Inspection Date MIsC e $5 / 3 / 99 \quad(224 / 4)$

Diameter \qquad 24
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date \qquad
Upstream Manhole \qquad $20 \phi 25$
Dnstream Manhole_ ZD фて6
Total Length of Survey \qquad 224

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0	1			N/~ FLow	
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

$$
\begin{array}{ll}
\text { Velocity: } & \text { T - turbulent } \\
& \mathrm{L}-\text { laminar } \\
\mathrm{Q}-\text { quiescent }
\end{array}
$$

\qquad

$$
\text { light comoro } \rightarrow 9 \text { gite worse }
$$

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant
 Sewer Video Evaluation Form

Area
Grid Location 20
Tape Number MISC.
Inspection Date \qquad $5 / 3 / 29$ 9 10617

Diameter
Material(circle one) PVC, Clay, Concrete , Other Δ / P Installation Date Upstream Manhole_ $20 \quad 026$ Dnstream Manhole \qquad 20007

Total Length of Survey 98

Survey Dir.(circle one) Upstream \rightarrow Dnstrean, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0	1			0	
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: | T-turbulent |
| :---: |
| L-laminar |
| Q- quiescent |

General Notes:

General Notes:

Defect Report

Footage	Feature	Notes
98	$m+t$	w) flow - 16 Cinvouvi

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area \qquad
Grid Location \qquad
Tape Number \qquad
Inspection Date \qquad 10/6/99 73 ft

Diameter $30^{\prime \prime}$
Material(circle one) PVC, Clay, Concrete, Other_CPA
Installation Date \qquad
Upstream Manhole 38044
Dnstream Manhole_ 38005 \qquad
Total Length of Survey 73

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log
Mo sibs

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0	$/-2$			$/ 57$	
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: | T-turbulent |
| :---: |
| L- laminar |
| Q-quiescent |

General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes
	M	

ROCK CREEK

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location $\quad 3 \mathrm{H}$
Tape Number MISC.
Inspection Date $6 / 12 / 00 \quad(228 / 4)$

Diameter \qquad
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date
Upstream Manhole $\quad 3 \mathrm{HOC4}$
Dnstream Manhole 3 HO 76

Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0	D			$16 \quad f h_{\text {our }}$	
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: | T-turbulent |
| :--- |
| |
| |
| L-laminar |
| Q-quiescent |

General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes
0	ft Mah	
2.14	$M H$	

Little Rock Wastewater Utility Plant
 Sewer Video Evaluation Form

Area
Grid Location $5 L$

Tape Number MISC
Inspection Date _10/4/99_297 ft
Diameter 36
Material(circle one) PVC, Clay, Concrete, Other_ CDR Installation Date
Upstream Manhole__ SCO52
Dnstream Manhole 5L051

Total Length of Survey \qquad 297

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

$\left.\begin{array}{|l|c|c|c|c|c|}\hline \text { Footage } & \text { Corrosion } & \text { Rebar } & \text { Debris } & \text { Flow Depth -Velocity } & \text { Lining } \\ \hline 0 & 0 & & & 4 \cup 7 & \text { l }\end{array}\right]$

Velocity: | | $\mathrm{T}-$ turbulent |
| ---: | :--- |
| $\mathrm{L}-\operatorname{laminar}$ | |
| $\mathrm{Q}-$ quiescent | |

General Notes:

Defect Report

Footage	Feature	Notes
290	Mıt	Mo Cownum
		.

$$
\text { REDSAMEN } 12-13
$$

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location_ $\quad 7 C$

Tape Number_ MISC.
Inspection Date $4 / 22 / 99$ ($696 ~(4)$

Diameter \qquad 42
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date
Upstream Manhole \qquad
Dnstream Manhole \qquad 76009

Total Length of Survey \qquad 1260

Survey Dir.(circle one) Upstream \rightarrow Dnstrean, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0	1			$259 . \quad$	
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:	T - turbulent
	L - laminar
	$\mathrm{Q}-$ quiescent

General Notes:
Lan fringy

Defect Report

Footage	Feature	Notes
1255	Mit	Nl Conium

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location_ $7 C$
Tape Number_MISC
Inspection Date_4/20/99 (647 H)
Diameter 42
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date
Upstream Manhole_ 7 COOg
Dnstream Manhole_ \quad CO10
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0	0			C	
50				25^{\prime}	
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: | T-turbulent |
| :---: |
| |
| |
| L-laminar |
| Q-quiescent |

General Notes:

General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location_ 8N
Tape Number M/SC
Inspection Date $6 / 27 / 96 \quad 3144$
Diameter 24
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date
Upstream Manhole_8NO1O_8N008-8N012??
Dnstream Manhole_ 8N009
Total Length of Survey \qquad
Survey Dir.(circle one) Upstream \rightarrow Dnstream , Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Γ	Velocity:	T-turbulent
		L - laminar
		Q - quiescent
	General Notes:	

Defect Report

Footage	Feature	Notes

Little Rock Wastewater Utility Plant

 Sewer Video Evaluation FormArea
Grid Location $\quad 8 N$
Tape Number MISC
Inspection Date \qquad (20814)

Diameter 24
Material(circle one) PVC, Clay, Concrete, Other_HoCAS Installation Date
Upstream Manhole $8 \mathrm{NO} / 2$
Dnstream Manhole 8NOO4
Total Length of Survey 293

Survey Dir.(circle one) Upstream \rightarrow Dnstream , Dnstream \rightarrow Upstream

50 Foot Inspection Log Fight
$\left.\begin{array}{|l|c|c|c|c|c|}\hline \text { Footage } & \text { Corrosion } & \text { Rebar } & \text { Debris } & \text { Flow Depth -Velocity } & \text { Lining } \\ \hline 0 & ? & & & 2 v 2 & \text { L }\end{array}\right]$

Velocity: | $\mathrm{T}-$ turbulent |
| :--- |
| $\mathrm{L}-$ laminar |
| $\mathrm{Q}-$ quiescent |

General Notes:
sem bould - up
frisk

Defect Report

Footage	Feature	Notes
793	$M H$	

$$
\text { NORTH } 60
$$

Little Rock Wastewater Utility Plant
 Sewer Video Evaluation Form

Area
Grid Location \qquad
Tape Number \qquad
Inspection Date_ 8/30/95 592/A
Diameter 48
Material(circle one) PVC, Clay, Concrete, Other CPR
Installation Date \qquad
Upstream Manhole _10<008
Dnstream Manhole_ $10<007$
Total Length of Survey \qquad SB/

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log
M ins

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0	2			207.	
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: | T - turbulent |
| :--- |
| L - laminar |
| Q - quiescent |

General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad $工$

Defect Report

Footage	Feature	Notes
	Mut	

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area

Diameter \qquad 24
Material(circle one) (PVC, Clay, Concrete, Other \qquad
Installation Date \qquad
Upstream Manhole \qquad (EGG SIATPE)
Dnstream Manhole \qquad
Total Length of Survey \qquad 270

Survey Dir.(circle one) Upstream \rightarrow Dnstream), Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0	0			L	
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:
T -turbulent
L- laminar
Q - quiescent
General Notes:
limed? Vycont
quod quadites lope

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location_ //L

Tape Number M/SC.
Inspection Date $8 / 5 / 99 \quad 251 \mathrm{Ht}$
Diameter \qquad 24
Material(circle one) (PVC), Clay, Concrete, Other \qquad Installation Date \qquad
Upstream Manhole $\quad / / 1023$
Dnstream Manhole_ $\quad / L \circ 4$ 2
Total Length of Survey \qquad 248

Survey Dir.(circle one) pstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0	0			$/ 5$	2.
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: $\quad \begin{array}{ll} & \mathrm{T}-\text { turbulent } \\ & \mathrm{L} \text { - laminar } \\ & \mathrm{Q}-\text { quiescent }\end{array}$
General Notes:
Mm ain \& Mum bivilup

Defect Report

Footage	Feature	Notes
248	sJRucTuスE	ErNe

Little Rock Wastewater Utility Plant

Sewer Video Evaluation Form

Area
Grid Location＿／／L
Tape Number M／SC
Inspection Date＿8／5／99 33／ft
Diameter
Material（circle one）PVC，Clay，Concrete，Other \qquad
Installation Date
Upstream Manhole＿＿／／LOC4
Dnstream Manhole＿／／LOこ3
Total Length of Survey コこし

Survey Dir．（circle one）Upstream \rightarrow Dnstream，Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth－Velocity	Lining
0	0			$/ 5 ?$	L
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity:	$\mathrm{T}-$ turbulent
	$\mathrm{L}-\operatorname{laminar}$
	$\mathrm{Q}-$ quiescent

General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes
32 M		

Little Rock Wastewater Utility Plant
 Sewer Video Evaluation Form

Area
Grid Location \qquad //L
Tape Number \qquad C.

Inspection Date $8 / 5 / 79 \quad 175 \mathrm{ft}$
Diameter \qquad
24
Material(circle one) (PVC), Clay, Concrete, Other _VYLDN Installation Date \qquad
Upstream Manhole $/ / L 040$
Dnstream Manhole_ // LO24
Total Length of Survey \qquad 172

Survey Dir.(circle one) Upstream \rightarrow Dnstream), Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0	0			15 ?.	L
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T-turbulent
L - laminar
Q - quiescent

General Notes:

quant conohtron

Defect Report

Footage	Feature	Notes
170	lad Mil	

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location \qquad
Tape Number \qquad
Inspection Date_ 8/5/99 408 ft
Diameter \qquad 24
Material(circle one)
(VC), Clay, Concrete, Other \qquad
Installation Date \qquad
Upstream Manhole \qquad Dnstream Manhole_ $/ / L 0 \& 0$

Total Length of Survey 398

Survey Dir.(circle one) stream \rightarrow Dnstream , Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0	0			$/ 5$	L
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: $\quad \mathrm{T}$-turbulent
L - laminar
Q - quiescent
General Notes:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defect Report

Footage	Feature	Notes
353	Mit	

Little Rock Wastewater Utility Plant
 Sewer Video Evaluation Form

Area
Grid Location \qquad ここ M
Tape Number \qquad MISC \qquad
Inspection Date $10 / 25 / 29 \quad 87 / 4$
Diameter \qquad 24
Material（circle one）PVC，Clay，Concrete，Other \qquad CPR
Installation Date \qquad
Upstream Manhole \quad Z2M002
Dnstream Manhole＿で 2 Moor
Total Length of Survey \qquad 79

Survey Dir．（circle one）pstream \rightarrow Dnstrean，Dnstream \rightarrow Upstream 50 Foot Inspection Log 7
2.

Footage	Corrosion	Rebar	Debris	Flow Depth－Velocity	Lining
0	7			$10)$	$($
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T -turbulent
L- laminar
Q - quiescent
General Notes:
Foray \& Smoky - stem

Defect Report

Footage	Feature	Notes
49		
79		

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area \qquad
Grid Location 6 K
Tape Number_ 201
Inspection Date_ $7 / 10 / 00 \quad(330 \mathrm{ft})$
Diameter 30
Material(circle one) PVC, Clay, Concrete, Other_CPZ Installation Date
Upstream Manhole _6K108
Dnstream Manhole_ LK 109
Total Length of Survey \qquad 224

Survey Dir.(circle one) Upstream \rightarrow Dnstream, Dnstream \rightarrow Upstream

50 Foot Inspection Log

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

1. Velocity:	T - turbulent
	L - laminar
Q -quiescent	

General Notes:
Camera learned as sids

Defect Report

Little Rock Wastewater Utility Plant Sewer Video Evaluation Form

Area
Grid Location_ $\quad 6 k, 7 k$

Tape Number 201
Inspection Date $\quad 7 / 10 / 00 \quad(413 \mathrm{HH})$
Diameter 42
Material(circle one) PVC, Clay, Concrete, Other \qquad Installation Date \qquad
Upstream Manhole_ $6 k / 09$
Dnstream Manhole__工K10B
Total Length of Survey \qquad 517

Survey Dir.(circle one) upstream \rightarrow Dnstream , Dnstream \rightarrow Upstream 50 Foot Inspection Log Frog 4

Footage	Corrosion	Rebar	Debris	Flow Depth -Velocity	Lining
0					
50					
100					
150					
200					
250					
300					
350					
400					
450					
500					
550					
600					

Velocity: T - turbulent
L- laminar
Q - quiescent
General Notes:
\qquad
froggy lam

Defect Report
No Counter

PERMITTEE NAME／ADDRESS（Include Fac NAME LTTY＂FUKK CT	cility Name／Location if TV TF	ferent）		$\begin{gathered} \text { NALP } \\ =\mathbf{D I} \end{gathered}$	テ́a	$\begin{aligned} & \mathrm{SCH} \\ & 10 \mathrm{Ni} \end{aligned}$	EEL	NATION EPORT	$\begin{aligned} & \text { SYSTE } \\ & \text { (DMR) } \end{aligned}$	IPDES）	13F		rm AD	pproved.	04
ADDRESSARAM，$-T E L D$ WWT				ROO	18				01						
2，E＊CAFITOL				PERN	IT NUM	BER		Disch	HARGE	NUMBER	－FINAL				
FACIITY LTTTLE FOCK		72202				ONITO	RING	PERIOD			1－mbuTHi	ThTD	H2x	CIFAL	Wh
LOCATION ITTLE ROCK．\＆J．	TY GF－ADA	FLD		YEAR	MO	DAY		YEAR	MO	DAY					
LOCATIO ITTLE FOCK		72202	FROM	00	11	01	TO	00	11	30	Na Dushry	HATCE		＊	
ATTMn FICK \angle EAFGER	EGGIE A	ORETTT									OTE：Read Instruc	ctions bef		eting this	orm．
		QUA	ITY OR LOA	ADIN					QUAN	ITY OR CON	ENTRATION		O．	FREQUENCY	SAMPLE
		AVERAGE	MAXIM		UNI		MINI	IMUM		AVERAGE	MAXIMUM	UNITS		ANALYS／S	
$\begin{array}{rl} \text { BOD }, ~ & E-D A Y \\ \{Z O D E G & C \end{array}$	SAMPLE MEASUREMENT	3999	＊${ }^{+}$	＊＊				＊＊＊＊＊＊＊＊＊＊＊）		20.3	18.3	(19)	0	Dajly	24HFC
$\begin{array}{lll} 0060 & 0 & 0 \\ \text { EFFUENT GHES WALWE } \end{array}$	PERMIT REQUIREMENT	$\begin{aligned} & 9010 \\ & M O \text { AVG } \end{aligned}$	＊＊＊＊	＊＊			＊＊＊	＊＊＊＊		$\begin{aligned} & 30 \\ & A V G \end{aligned}$	$\begin{array}{r} 45 \\ 7 \mathrm{DA} \\ \hline \text { AVG } \end{array}$	$m=1$		AILY	COMFZ
$F H$	SAMPLE MEASUREMENT		＊＊	＊策洮				． 29		为为为为	7.01	(12)	0	Daily	Gris．
$\left\|\begin{array}{l} \text { OAOO } 160 \\ \text { EFFUENT GAOS VALUE } \end{array}\right\|$	PERMIT REQUIREMENT	$* * * * * *$	＊＊＊	＊＊	$\left\{\begin{array}{l} x * x \\ x * \\ x \end{array}\right.$		MIN	$\begin{aligned} & 6.0 \\ & \text { IMUM } \end{aligned}$		＊＊＊＊＊	$\begin{array}{r} 9.0 \\ \text { MAXIMUM } \end{array}$			AILY	ERAE
SOLIDSY TUTAL SUSFEADEX	SAMPLE MEASUREMENT	3301		＊＊＊				＊＊＊＊＊		16.9	18.2	(17)	0	Datiy	24 HFC
$\begin{aligned} & 00 \mathrm{EO} \text { I } 0 \quad 0 \\ & E F F U E N T \text { GFOES VALUE } \end{aligned}$	PERMIT REQUIREMENT	$\begin{aligned} & 9010 \\ & M O \text { AVG } \end{aligned}$	＊＊＊＊	＊＊	LES		＊＊＊	＊＊＊＊		$\begin{aligned} & 30 \\ & \text { AVG } \end{aligned}$	$\begin{array}{r} 4 E \\ 7 \text { DA AVG } \end{array}$	MG／L．		AILY	CUNP2C
$\begin{aligned} & \text { FLOHY TN COMDUIT OR } \\ & \text { THFU TFEATMENT FLANT } \end{aligned}$	SAMPLE MEASUREMENT	26.29						＊＊＊＊＊		＊＊＊＊＊＊			0	Cont．	T綺
$\begin{array}{ll} \text { EOOF } & 1 \\ \text { EFFLUENT } & 6 \\ \hline \text { OSS } \end{array}$	PERMIT REQUIREMENT	REPOFTT MO AVG	$\begin{aligned} & \text { KEPO } \\ & \text { DAIL.Y } \end{aligned}$	$\begin{aligned} & \overline{R T} \\ & M X \end{aligned}$	MED		＊＊＊	＊＊＊＊		＊＊＊＊＊＊	＊＊＊＊＊＊＊			AILYY	CTALZ
CHIGAINE：TOTAL FESTDUAL	SAMPLE MEASUREMENT	＊＊＊＊＊＊		＊＊				＊+ \％$\%$			1.98	（ 19）	0	Datily	Grab
$\begin{aligned} & E Q G O \\ & E F G L E N T \end{aligned}$	PERMIT REQUIREMENT	$* * * * * *$	＊＊＊＊	＊	$\begin{aligned} & * * * \\ & * * * \end{aligned}$		＊＊＊	＊＊＊＊		$* * * * *$	REFORT INET MAX			AILY	洓属AB
COTFDF湖，FECAL GEMEFGL	SAMPLE MEASUREMENT	＊＊＊＊＊＊	＊	＊＊				＊＊＊＊		293	408		0	Dajly	Grat
	PERMIT REQUIREMENT	$\cdots * * * * *$					＊＊＊	＊＊＊		$\begin{gathered} 1000 \\ D A G E O \end{gathered}$	$\begin{array}{cc} & 2000 \\ 7 & D A \\ 7 & G E O \end{array}$	$100 \mathrm{HL}$		AILY	GRAE
	SAMPLE MEASUREMENT														\％
	PERMIT REQUIREMENT														
NAME／TITLE PRINCIPAL EXECUTIVE OFF	FFICER IC											TELEPHON		DA	ATE
Rick L．Barger，P．E．，DE Director of Operations		that qualfifed personney persons directly respon Is ，to the best of my	efor gatherl wiedge and b	and ev the In					ATURE	OF PRINCIPAL	CUTIVE 501	$1,376-2$			
TYPED OR PRINTED	includin	the possibllity of fline an	pmarisonment	lorknowi	gevolatio				ICER	UTHOR	AREA CODE	E NUMBER		YEAR MO	1 DAY
COMMENTS AND EXPLANATION OF ANY	Y VIOLATIONS（R	ference all attachm	nts here）												
FLOW FUST EE MDNITORE GALIDNE FEF DAY）．	ED AND FE EFQRT TOT	MFTED（AB L FEETDUA	MONTH CH C	Y	VEF	GE	AND	DAIL NGTAT	4 man	KIMUM EOLS MA	NDEF GUANT TMLIVM．	ITY Il		Liton	${ }^{2}$

EPA Form 3320-1 (REV 3/99) Previous editions may be used.

$\begin{gathered} \text { NO. } \\ \text { EX } \end{gathered}$	Frequency Of ANLYSIS	SAMPLE TYPE
0	Daily	24HFC
	AIL－	30， 1 F：2
0	Daily	Gre
	\％ 4 L 4	3FAE
0	Daily	24 HFC
	AAITY	－CMmars
0	Cont．	TM
	WW1．${ }^{\text {W }}$	AF9 AL 4
0	$0 \mathrm{at} \mathrm{S}^{\text {a }}$	Grab
	4×3	Wh乐㛈
0	Daily	Gra＇

[^3]

8 ,

FDSCK WASTEWATER UT

Ma imF

MA TodTDTNMA

OOL-MCNTHLY-TFTD	Whntoxpat wh	
3** DIECHAFEE	为为	
NOTE: Read inetructione bol	complating this form.	

 NAME LITT ROCK WASTEWATER UTILITY ADDRESS ADAMS FIELD WN TREATMENT FLANT $A R 72 Z O 2$
TCHMAE EIMMAMON SSSTEM（NPDES）
ONITORING REPORT（OMR）
NATIONAL POLLUTNN

AFOOZ 18 OCS
PERMIT NUMBER

F－FINAL
OOI－MONTH
OO1－MONTHIY－TETE WUNICIFA W on
＊＊＊MO DISCHARGE
NOTE：Read inatructione bofore complating this form．

PARAMETER		QUANTITY OR LOADING			Quality or Concentration				$\begin{aligned} & \text { NO. } \\ & \text { EX } \end{aligned}$	FREQUENCY OF andersis	SAMPLE TYPE
		AVERAGE	MAXIMUM	UNITS	minimum	AVERAGE	MAXIMUM	UNITS			
BCD， $5-D A Y$ $(20$ DEG． 	SAMPLE MEASUREMENT	181	＊＊＊＊＊＊	$\left\|\begin{array}{l} (26) \\ \mathrm{BG} / \mathrm{D} \end{array}\right\|$	＊＊＊＊＊＊	1	13.9	（ 19）	0	Daily	$24 H 2$
$\text { OOSIO } 1 \quad 0 \quad 0 \quad 0$	PERMIT REQUIREMENT	$\begin{array}{r} 5010 \\ 40 \& v 6 \end{array}$	\％＊＊\％＊		＊＊＊＊＊＊	Md A A C.		MG／L		AIEAY	
PH 00400 1 EFFLUENT GFOSS VALUE	SAMPLE MEASUREMENT	＊＊＊＊＊＊	＊＊＊＊＊＊		6.47	\cdots＊＊＊＊＊＊	0.98	（12）	0	Daily	\＃
	PERMIT REQUIREMENT	＊＊＊＊＊＊		$* * *$ $* * * *$	$\begin{array}{r} 6.9 \\ \text { juratulum } \end{array}$	$25 * \% \%$		Su		AILY	BFade
SOLIDS，TOTAL SUSFENDED	SAMPLE MEASUREMENT	1413	＊＊＊＊＊＊	（26）	＊＊＊＊＊＊	8.7	9．5	（15）	0	Daily	$\angle 4 F F C$
$\begin{aligned} & 00530 \\ & \text { EFFLUENT GROSS VALUE } \end{aligned}$	PERMIT REOUIREMENT		为＊＊	LES／DY	＊＊＊＊＊＊	MiN AN：		MG／L		AM． 4	－mp\％
$\begin{aligned} & \text { FLOW, IN COINDUIT OR } \\ & \text { THFL TREATMENT FLANT } \end{aligned}$	SAMPLE MEASUREMENT	19，45	30.16	（03）	＊＊＊＊＊＊	＊＊＊＊＊＊	＊$* * * * *$		0	Conte．	Tit
EOOSO 1 O O 0	PERMIT REQUIREMENT	REFTRT MD AVG	FERERT DATLY Mx	$M G D$	$4 * * * * *$			＊＊＊关米半		4 ］．${ }^{\text {\％}}$	18x 0
CHLDFINE，TOTAL RESIDUAL	SAMPLE MEASUREMENT	＊＊＊＊＊＊	2）$* * * * * *$		＊＊＊＊＊＊		2	（193	0	Ledty	Orado
EOOGO I $0 \quad 0$ EFFLUENT GROSS VALUE	PERMIT RECUIREMINT	\％＊	＊ $\mathrm{H} \% * * *$	＊＊＊ ＊＊＊＊	＊＊＊＊＊	4＊＊＊4＊		$M G / L$		H2．Y	35\％A4
EOLIFURM，FECALGENERALT4OES 1 G 0EFFLUENT GROSS VALUC	SAMPLE MEASUREMENT	＊＊＊＊＊＊	＊＊＊＊＊＊		＊＊＊＊＊＊	9	30	（ 2S）	0	Datiy	Gro
	PERMIT REQUIREMENT	＊＊＊＊＊	$4 * * * * *$	$* * *$ $* * * *$	＊＊＊＊＊＊	$\begin{gathered} 3 \% \\ \text { MODA } 5 \times 4 \end{gathered}$		100 MiL		\％ax y	प्यकl 7
	SAMPLE MEASUREMENT									7	
	$\begin{aligned} & \text { PERMIT } \\ & \text { REQUIREMENT } \end{aligned}$										
		ICeriliy under penally of taw that thls document and ail atitachments were prepared under my direction or superision in accordance with a system detigned To assure thal qualined personnel property zather and evaluate the information submitted．Bayd on my inquifrof the person or perions who manage the system， or those perrons directily responsibibe for 2 athering the information，the information submilted ts to the best of my knowided ge and belief，truse，sceurate，and complete． Including the posiblulty or tine and imprisonment for k nowing violations．						TELEPHON		DAT	
Wick L ．ourger，P．E．，DEE Director of Operacfons TYPED OR PRINTED to assure that qualined personnel property zather and evaluate the informiation submilted．Bayed on my inguiry of the persion or persons who manase the system， or those persons directily repponstbie tor zathering the information；the intormation submilted is，to the best of my knowied ge and belief，truse，securate，and complefe． 1 am aware that there are significant penalties for submitting false information， Including the possiblity of fine and impilsonment for knowing violations．					$\frac{7}{81 \mathrm{CN}}$		$\begin{array}{l\|l} \text { VUTVE } & 501 \end{array}$	376		11	
			OR AUTHORIZE	ENT AREA CODE	NUMBER		YEAR ${ }^{\text {MO }}$	DAY			
FLOH MUST：BE MONITPRED ANI REFORTED（AS MONTHLY AVERAGE GALEOWE FEF DAY）REFORT TOTAL RESIDUAL CHLORINE（TRC）					$\begin{aligned} & \text { AND DAILY } \\ & \text { Am INETAN } \end{aligned}$	Max IPMm TANEOUS MA	DEF GUANT IMLIM is	TY		LTMA	－

KILILI alıMコー心
 NATIONAL POLLUTAN GHABE ELMMINATION SYSTEM（NPDES）
NA POLLUTAN
DISCHARG

F－FINAL
OO1－MONTHLY－TRTD MUNXCIFAL WW ＊＊＊MO DISCHARGE－ NOTE：Read inetructione bofore completing this form．

ADEQ

R K A N S A S repartment of Environmental Quality

CERTIFIED MAIL RETURN RECEIPT REQUESTED (7000060000238592 3410 1 (
August 31, 2001
Mr. Rick Barger, P.E., DEE
Director of Operations
Little Rock Wastewater Utility:- Adams Field
221 East Capital
Little Rock, AR 72202-2412
RE: Application for Permit Number AR0021806
Dear Mr. Barger:
This letter constitutes notice of the Department's final permit decision and a copy of the final permit is enclosed. The response to comments describes any substantial changes from the draft permit.

The applicant, and any other person submitting written comments during the comments period, and any other person entitled to do so, may request an adjudicatory hearing and Commission review on whether the decision of the Department should he revised or modified. Such a request shall be in the form and manner required by Department Regulation No. 8.

CERTIFICATE OF SERVICE

I, Chuck Bennett, hereby certify that a copy of this permit has been mailed by first class mail to Mr. Rick Barger, P.E., DEE, Director of Operations, Little Rock Wastewater Utility - Adams Field, 221 East Capital, Little Rock, AR 72202-2412, on or before

Chief, Water Division
$C B: M B: m b$

Enclosure
cc: Betty Buchanan
Mo Shafii
Shenel sandidge

A R K A N S A S
Department of Environmental Quality

RESPONSE TO COMMENTS
 FINAL PERMIT DECISION

This is our response to comments received on the subject draft permit in accordance with regulations promulgated at 40 CFR Part 124.17.

Permit No. : AR0021806
Applicant : Little Rock Wastewater Utility-Adams Field
Prepared by : Morteza (Mo) Shafii
Permit Action : Final permit decision and response to comments received on the draft permit publicly noticed on June 16, 2001.

Date Prepared : July 27, 2001
The following comments have been received on the draft permit.
Letter from Rick Barger to Chuck Bennett dated July 12, 2001.

I. Response to issues raised

ISSUE \#1

Permittee has requested that all the requirements and limits for cyanide be removed from the final permit.

RESPONSE \#1
Staff agrees. permittee submitted additional analysis at below the acceptable Minimum Quantification Levels (MQL) for cyanide (20 $\mu \mathrm{g} / \mathrm{l})$. The analysis did not indicate that cyanide was present in the effluent. Based on the new data, all the requirements and limits for cyanide have been removed from the final permit.

ISSUE \#2

See Issue \#1.

ISSUE \#3

Permittee has requested that based on 40 CFR 133.104 (d) and previously issued permit the removal percentage for BOD5 and TSS be changed to 80% and 83%, respectively.

RESPONSE \#3

Staff agrees.

ISSUE \#4

Permittee has requested that condition of 8.c.a. of part III be revised to three(3) grab samples instead of four(4) grab samples.

RESPONSE \#4

Staff does not agree. Requirements of four grab samples are based on 40 CFR $122.21(\mathrm{~g})(7)$.

ISSUE \#5
Page 13 of Part III, condition No. 9.1.d. the words "or below" be, removed from the final permit.

RESPONSE \#5

Staff does not agree. A dilution series is required to reveal a concentration-response relationship of a whole effluent. The effect of a toxicant to an organism is first seen in the highest concentration, in this case the critical dilution. If a response is determined in a lower concentration, it is typically revealed in the highest concentration as well. The language "or below" would also allow for possibility of a bimodal concentration-response relationship to an effluent.

ISSUE \#6

Permittee has requested that synthetic dilution water of similar pH , hardness, and alkalinity to receiving stream (Arkansas River) to be used as the control and dilution water in lieu of the receiving water.

RESPONSE \#6

The Department agrees.

ISSUE \#7

Page 14 of Part III, condition No. 9.2.a.i, the words "or below" be removed from the final permit.

RESPONSE \#7

See response \#5 above.
ISSUE \#8
Permittee has requested that condition No. 9.3.d.vi. of part III be deleted since facility discharge is not dechlorinated.

RESPONSE \#9

Staff agrees.
ISSUE \#9
Permittee has requested that condition 9.4.a. and c. of part III be corrected to read "Part II" instead of "Part III".

RESPONSE \#9
Staff agrees.
ISSUE \#10
Permittee has requested that biomonitoring in fact, sheet be corrected to be consistent with biomonitoring in Part III in regard to reporting of pH , temperature, hardness, dissolved oxygen, and etc.

RESPONSE \#10

Staff agrees.

ISSUE \#11

Page 20 of Part III, condition No. 9.5.a. since it is unclear how the "more sensitive species" is determined, the reduction in the test frequency should be changed to not more than 1/year for each species.

RESPONSE \#11
Staff does not agree.
ISSUE \#12
See Issue \#1

Permit number: AR0021806

AUTHORIZATION TO DISCHARGE UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM AND THE ARKANSAS WATER AND AIR POLLUTION CONTROL ACT

In accordance with the provisions of the Arkansas water and Air Pollution Control Act (Act 472 of 1949, as amended, Ark. Code Ann. 8-4-101 et seq.), and the Clean Water Act (33 U.S.C. 1251 et seq.),

Little Rock Wastewater Utility-Adams Field 221 East Capital
Little Rock, AR 72202-24í2
is authorized to discharge from a facility located at
northeast of the Little Rock National Airport in Section 8, Township 1 North, Range 11 West in Pulaski County, Arkansas.

Latitude: $34^{\circ} 44^{\prime} 3.5^{\prime \prime} ;$ Longitude: $92^{\circ} 12^{\prime} 50.3^{\prime \prime}$
to receiving waters named:

Arkansas River in Segment $3 C$ of the Arkansas River Basin.
The outfall is located at the following coordinates:
Outfall 001:Latitude : $34^{\circ} 44^{\prime} 34^{\prime \prime}$; Longitude: $92^{\circ} 12^{\prime} 45^{\prime \prime}$
in accordance with effluent limitations, monitoring requirements, and other conditions set forth in Parts I, II (Version 2), III, and IV (Version 2) hereof.

This permit shall become effective on October 1, 2001
This permit and the authorization to discharge shall expire at midnight, September 30, 2006

Chief, Water Division
Arkansas Department of Environmental Quality
$\begin{array}{ll}\text { Part I } & \text { Permit number: AF } 1806: \\ \text { PERMIT REQUIRL._NTS } & \text { Page } 1 \text { of Part IA }\end{array}$

Effluent Characteristic	Discharge Limitations			Monitoring Requirements	
	Mass (lbs/day)	Other Unit	(specify)	Measurement	Sample
	Monthly Avg	Monthly Avg	7-day Avg	Frequency	Type
Flow (MGD) +	N/A	N/A	N/A	Daily	Totalizing Meter
Biochemical Oxygen Demand (BOD5)	9010	$30 \mathrm{mg} / 1$	$45 \mathrm{mg} / \mathrm{l}$	Once/day	24-hr composite
Total Suspended Solids (TSS)	9010	$30 \mathrm{mg} / \mathrm{l}$	45 mg/l	Once/day	24-hr composite
Total Residual Chlorine (TRC)	N/A	Report mg/l	(Instantaneous Max)	Once/day	Grab
Fecal Coliform Bacteria (FCB)**				Once/day	
(April-September)	N/A	200	400	Once/day	Grab
(October-March)	N/A.	1000	2000	Once/day	Grab
Chronic Biomonitoring ${ }^{1}$	N/A	N/A	N/A	Once/quarter	24-hr composite
Pimephales promelas (Chronic)		7-day Avera			24-hr composite
Pass/Fail Growth (7-day NOEC) TGP		Report (Pass	=0/Fail=1)	Once/quarter	24-hr composite
Pass/Fail Lethality (7-day NOEC)	P6C	Report (Pass	$=0 /$ Fail $=1$)	Once/quarter	24-hr composite
Survival (7-day NOEC) TOP6C		Report \%		Once/quarter	24-hr composite
Coefficient of Variation TQP6C		Report \%		Once/quarter	24-hr composite
Growth (7-day NOEC) TPP6C		Report \%		Once/quarter	24-hr composite
Ceriodaphnia dubia (Chronic)		7-day Averac			
Pass/Fail Reproduction (7-day NOE	TGP3B	Report (Pass	=0/Fail=1)	Once/quarter	24-hr composite
Pass/Fail Lethality (7-day NOEC)	P3B	Report (Pass	=0/Fail=1)	Once/quarter	24-hr composite
Survival (7-day NOEC) TOP3B		Report \%		Once/quarter	24-hr composite
Coefficient of Variation TQP3B		Report \%		Once/quarter	24-hr composite
Reproduction(7-day NOEC) TPP3B		Report \%		Once/quarter	24-hr composite
		Minimum	Maximum		
pH	N/A	6 s.u.	9 s.u.	Once/day	Grab
+ Report monthly average and daily maximum as MGD.					
See Part III, Condition No. 10.					
** See Part III, Condition No. 2.					
See Part III, Condition No.					

[^4]Permit number: AR0021806 , Page 1 of Part IB

SECTION B. SCHEDULE OF COMPLIANCE

The permittee shall achieve compliance with the effluent limitations specified for discharges in accordance with the following schedule:

1. Compliance with final limitations is required on the effective date of the permit.

RT II - STANDARD CONDITIONS _CTION A - GENERAL CONDITIONS

2. Duty to Comply

The permittee must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of the Iederal Clean Water Act and the Arkansas Water and Air Poliution Control Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application. Any values reported in the required Discharge Monitoring Report which are in excess of an effluentlimitation specified in Part 1.A shall conslitute evidence of violation of such effluent limitation and of this permit.
2 Penalties for Violations of Permit Conditions
The Arkansas Water and Air Pollution Control Act provides that any person who violates any provisions of a permit issued under the Act shall be guilty of a misdemeanor and upon conviction thereof shall be subject to imprisonment for not more than ore (1) year, or a fine of not more than ten thousand dollars $(\$ 10,000)$ or by both such line and imprisonment for each day ol such violation. Any person who violates any provision of a permit issued under the Act may also be subject to civil penalty in such amount as the court shall find appropriate, not to exceed five thousand dollars $(\$ 5,000)$ for each day of such violation. The lact that any such violation may constitute a misdemeanor shall not be a bar to the maintenance of such civil action.
3. Permit Action

This permit may be modified, revoked and reissued, or terminated for cause including, but not limited to, the following:
a. Violation of any terms or conditions of this permit or
b. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts; or
c. A change in any conditions that requires either a temporary or permanent reduction or elimination of the authorized discharge; or
d. A determination that the permitted activity endangers human health or the environment and can only be regulated to acceptable levels by permit modilication or termination.
e. Failure ol the permittee to comply with the provisions of ADPCE Regulation No. 9 (Permit tees) as required by condition II A. 10 herein.
The liling of a request by the permittee for a permit modification, revocation and reissuance, or termination, or a notilication of planned changes or anticipated noncompliance, does not slay any permit condition.
4. Toxic Pollutants

Nolwithstanding Part IIA. 3. , il any loxic eflluent standard or prohibition fincluding any schedule of compliance specified in such eflluent standard or prohibition) is promulgated under Regulation No. 2, as amended (regulation establishing water quality standards for surlace waters of the State of Arkansas) or Section 307(a) of the Clean Water Act for a toxic pollutant which is present in the discharge and that standard or prohibition is more stringent than any limitation on the pollutant in this permit, this permit shall be modified or revoked and reissued to conform to the toxic effluent standards or prohibition and the permittee so notified.
The permittee shall comply with effluent standards or prohibitions established under Regulation No. 2 (Arkansas Water Quality Standards), as amended, or Section 307(a) of the Clean Water Act for toxic pollutants within the time provided in the regulations thatestablish those standards or prohibitions, even if the permit has not yet been modified to incorporate the requirement.
5. Civil and Criminal Liability

Except as provided in permit conditions on "Bypassing" (Part II.B.4.a.). and "Upsets" (Part II.B.5.b.), nothing in this permit shall be construed to relieve the permittee from civil penalties for noncompliance. Any lalse or materially misleading representation or concealment of information required to be reported by the provisions of this permit or applicable state and lederal statutes or regulations which defeats the regulatory purposes of the permit may subject the permittee to criminal enforcement pursuant to the Arkansas Water and Air Pollution Control Act (Act 472 ol 1949, as amended).
6. Dil and Hazardous Subslance Liability

Nothing in this permit shall be construed to preclude the institution ol any legal action or relieve the permittee from any responsibilites, liabilities, or penalties to which the permitlee is or may be subject under Section 311 of the Clean Water Act. State Laws
Nothing in this permit shall be construed to preclude the institution of any legal action or relieve the permittee from any responsibilities, liabilities, or penalties established pursuant to any applicable Slate law or regulation under authority preserved by Section 510 of the Clean Water Act.
8. Property Rights

The issuance of this permit does not convey any property righls of any sort, or any exclusive privileges, nor does it authorize any injury to private properly or any invasion of personal rights, nor any inlringement of Federal, State or local laws or
9. Severability

The provisions of this permit are severable. If any provisions of this permit, or the application ol any provision of this permil to any circumstance, is held invalid, the application of suchprovisions to other circumstances, and the remainder of this i permit, shall not be affected thereby.

10. Permit Fees

The permittee shall comply with all applicable permit lee requirements for wastewater discharge permits as described in ADPCE Regulation No. 9 (Regulation for the Fee System for Environmental Permits). Failure to promplly remit all required fees shall be grounds for the Direclor to initiate action to terminate this permit under the provisions of 40 CFR 122.64 and $124.5(\mathrm{~d})$, as adopted in ADPCE Regulation No. 6, and the provisions of ADPCE Regulation No. 8.

SECTION B - OPERATION AND MAINTENANCE OF POLLUTION CONTROLS

1. Proper Operation and Haintenance
a. The permittee shall at all times properly operate and maintain all facilities and systerns of treatment and control (and related appurtenances) which are installed or used by the permittee to achieve compliance with the conditions of this'permit. Proper operation and maintenance also includes adequate laboratory controls and appropriate quality assurance procedures. This provision requires the operation of backup of auxiliary lacilities or similar systems which are installed by a permittee only when the operation is necessary to achieve compliance with the conditions ol the permit.
b. The permittee shall provide an adequate operaling stalf which is duly qualilied to carry out operation, maintenance and testing functions required to insure compliance with the conditions of this permit
2. Need to Halt or Reduce Not a Defense

It shall not be a defense for a permittee in an enforcement action that it would have been necessary to hatt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. Upon reduction, loss, or failure of the treatment lacility. the permittee shath, to the extent necessary to maintain compliance with its permit, control production or discharges or both until the lacility is restored or alternative method of treatment is provided. This requirement applies, Ior example when the primary source of power for the treatment lacility is reduced, is lost, or alternate power supply lails.
3. Duty to Mitigate

The permittee shall take all reasonable steps to minimize or prevent any discharge in violation of this permit which has reasonable likelihood of adversely allecting human health or the environment.
4. Bypass of Treatment Facilities
a. Bypass nol exceeding limitation. The permittee may allow any bypass to occur which does not cause eflluent limitations lo be exceeded, but only if it also is for essential maintenance to assure ellicient operation. These bypasses are not subject to the provision of Part II.8.4.b. and 4.c.
b. Notice
(I) Anticipated bypass. Il the permittee knows in advance of the need for a bypass, it shall submit prior notice, if possible, at least ten days before the date of the bypass.
(2) Unanticipated bypass. The permittee shall submit notice of an unanticipated bypasss as required in Part II.D.6(24-hour notice).
c. Prohibition of bypass.
(1) Bypass is prohibited and the Director may take enforcement action againsl a permittee for bypass, unless:
(a) Bypass was unavoidable to prevent loss ol life, personal injury, or severe property damage;
(b) There were no feasible alternalives to the bypass, such as the use of auxiliary treatment facilities, relention of untreated wastes, or maintenance during normal periods ol equipment downtime. This condition is not satislied if the permittee could have installed adequate backup equipment to prevent a bypass which occurred during normal perrods of equipment downlime or preventive maintenance; and
(c) The permittee submitted notices as required by Part II.B.4.b.
(2) The Director may approve an anticipated bypass, after considering its adverse eflects, if the director delermines that it will meet the three conditions listed above in Part II.B.4.c.(1).
5. Upset Conditions
a. Effect of an upset. An upset constitutes an affirmative defense to an action brought for noncompliance with such lechnology based permit eflluent limitations it the requirements of Part II.8.5.b. of this section are met. No determination made during administrative review of claims that noncompliance was caused by upset, and before an action for noncompliance, is final andminietratiue artinn suhbert th iurlirial review
b. Conditions necessary for a demonslration of upset. A permittee who wishes to estatish the alfirmative delense of upset shall demonstrate, through properly signed, contemporaneous operating logs, or other relevant evidence that:
(1) An upset occurred and that the permittee can identify the cause(s) of the upset;
(2) The permitted facility was at the time being properly operated;
(3) The permittee submitted notice of the upset as required by Part II.D.6.; and
(4) Ilte pernittee complied with any remedial neasures required by Part 12.8.3.
c. Burden of prool. In any enlorcement proceeding the permittee seeking to establish the occurrence of an upset has the burden of prool.
6. Removed Substances

Solids, sludges, filter backwash, or other pollutants removed in the course of treatment or control of wastewaters shall be disposed of in a manner such as to prevent any pollutant from such materials from entering the waters of the state. Written approval for such disposal must be obtained from the ADPCE
7. Power Failure

The permittee is responsible for maintaining adequate saleguards to prevent the discharge of untreated or inadequately treated wastes during electrical power failure either by means of alternate power sources, standby generators, or retention of inadequately treated effluent.

SECTION C - MONITORING AND RECORDS

1. Representative Sampling

Samples and measurements taken as required herein shall be representative of the volume and nature of the monitored discharge during the entire monitoring period. All samples shall be,taken at the monitoring points specified in this permit and, unless otherwise specified, before the effluent joins or is diluted by any other wastestream, body of water, or substance. Monitoring points shall not be changed without notification to and the approval of the Director. Intermittent discharges shall be monitored.

2 Flow Heasurements
Appropriate flow measurement devices and methods consistent with accepted scientific practices shall be selected and used to insure the accuracy and reliability of measurements of the volume of monitored discharges. The devices shall be installed, calibrated and maintained to insure the accuracy of the measurements are consistent with the accepted capability of that type of device. Devices selected shall be capable of measuring flows with a maximum deviation of less than $\pm 10 \%$ Irom true discharge rales throughout the range of expected discharge volumes and shall be installed at the monitoring point of the discharge.
3. Monitoring Procedures

Monitoring must be conducted according to test procedures approved under 40 CFR Part 136, unless other test procedures have been specified in this permit. The permittee shall calibrate and perform maintenance procedures on all monitoring and analytical instrumentation at intervals Irequent enough to insure accuracy of measurements and shall insure that both calibration and maintenance activities will be conducted. An adequate analytical quality control program, including the analysis of sufficient standards, spikes, and duplicate samples to insure the accuracy of all required analytical results shall be maintained by the permittee or designated commercial laboratory. At a minimum, spikes and duplicate samples are to be analyzed on 10% of the samples.
4. Penalties for Tampering

The Arkansas Water and Air Pollution Control Act provides that any person who falsifies, tampers with, or knowingly renders inaccurate, any monitoring device or method required to be maintained under the Act shall be guilty of a misdemeanor and upon conviction thereof shall be subject to imprisonment for not more than one (1) year or a fine of not more than ten thousand dollars $(\$ 10,000)$ or by both such fine and imprisonment.
5. Reporting of Monitoring Results

Monitoring results must be reported on a Discharge Monitoring Report (DMR) form (EPA No. 3320-1). Permittees are required to use preprinted DMR forms provided by ADPCE, unless specific written authorization to use other reporting forms is obtained from ADPCE. Monitoring results obtained during the previous calendar month shall be summarized and reported on a DMR form postmarked no later than the 25 th day of the month following the completed reporting period to begin on the effective date of the permit. Duplicate copies of DMR's signed and certified as required by Part II.d. 11 and all other reports required by Part II.D. (Reporting Requirements), shall be submitted to the Director at the following address:

Director
Arkansas Department of Pollution
Control and Ecology
8001 National Drive
$\overline{\text { P. }} \overline{0}$. $\bar{B} 0 \times \overline{8} \overline{9} \overline{1} \overline{3}$
Little Rock, AR 72219-8913
If permittee usēs öutside laboratory facilities for sampling and/or analysis, the name and address of the contract laboratory shall be included on the DMR.
6. Additional Monitoring by the Permittee

If the permittee monitors any pollutant more frequently than required by this permit, using test procedures approved under 40 CFR 136 or as specified in this permit, the results of this monitoring shall be included in the calculation and reporting of the data submitted in the DMR. Such increased frequency shall also be indicated on the DMR.
7. Retention of Records

The permittee shall relain records of all monitoring information, including all calibration and maintenance records and all original strip chart recorduns for continuous monitoring instrumentation, copies of all reports required by this permit, and records of all data used to complete the application for this permit, for a period of at least 3 years trom the date of the sample, measurement, report or application. This period may be extended by request of the Director at any time.
8. Record Contents

Records and monitoring information shall include:
a. The date, exact place, time and methods of sampling or measurements, and preservatives used, if any.
b. The individual (s) who performed the sampling or measurements;
c. The date(s) analyses were formed;
d. The individual(s) who performed the analyses;
e. The anatylical techniques or methods used; and
I. The measurements and results of such analyses.
9. Inspection änd Entry

The permittee shall allow the Director, or an authorized representative, upon the presentation of credentials and other documents as may be required by law, to:
a. Enter upon the permittee's premises where a regulated facility or aclivity is located or conducted, or where records must be kept under the conditions of this permit;
b. Have access to and copy, at reasonable times, any records that must be kept under the conditions of this permit;
c. Inspect at reasonable times any lacilities, equipment jincluding monitoring and control equipment). practices, or operations regulated or required under this permit; and
d. Sample, inspect or monitor at reasonable times, for the purposes ol assuring permit compliance or as otherwise authorized by the Clean Water Act, any substances or paramelers at any location.

SECTION D - REPORTING REQUIREMENTS

1. Planned Changes

The permittee shall give notice and provide plans and specilication to the Director tor review and approval prior to any planned physical alterations or additions to the permitted lacility. Notice is required only when:

For Industrial Dischargers

a. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in 40 CFR Part 122.29(b).
b. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants which are subject neither to effluent limitations in the permit, nor to notification requirements under 40 CFR Part 122.42(a)(1).

For POTW Dischargers:

c. Any change in the facility discharge fincluding the introduction of any new source or significant discharge or significant changes in the quantity or quality of existing discharges of pollutants) mustbe reported to the permitting authority. In no case are any new connections, increased flows, or significant changes in inlluent quality permitted that will cause violation of the eflluent limitations specilied herein.
2. Anticipated Noncompliance

The permittee shall give advance notice to the Direclor of any planned changes in the permitted facility or activity which may result in noncompliance with permit requirements.
3. Transfers

The permit is nontranslerable to any person except alter notice to the Director. The Director may require modification or revocation and reissuance of the permit to change the name of the permittee and incorporate such other requirements as may be necessary under the Act.
4. Monitoring Reports

Monitoring results shall be reported at the intervals and in the form specilied in Part II.C.5. (Reporting). Discharge Monitoring Reports must be submitted even when no discharge occurs during the reporting period.
5. Compliance Schedule

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of this permit shall be submitted no later than 14 days following each schedule date. Any reports of noncompliance shall include the cause of noncompliance, any remedial actions

Iwenty-four Hour Report

a. The permittee shall report any noncompliance which may endanger health or the environment. Any information shall be provided orally within 24 hours Irom the time the permittee becomes aware of the circumstances. A written submission shall also be provided within 5 days of the time the permittee becomes aware of the circumstances. The written submission shall contain the following information:
(1) a description of the noncompliance and its cause;
(2) the period of nencompliance, including exact dates and limes, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and
(3) sleps laken or planned to reduce, eliminate and prevent reoccurrence of the noncompliance.
b. The following shalt be included as information which must be reported within 24 hours:
(1) Any unanticipated bypass which exceeds any eflluent limitation in the permit;
(2) Any upset which exceeds any effluent limitation in the permit; and
(3) Violation of a maximum daily discharge limitation for any of the pollutants listed by the Director in Part III of the permit to be reported within 24 hours.
c. The Director may waive the written report on a case-by-case basis if the oral report has been received within 24 hours.
7. Other Noncompliance

The permittee shall report all instances of noncompliance not reported under Part II.D.4, 5, and 6, at the time monitoring reports are submitted. The reports shall contain the information listed at Part II.D.6.
8. Changes in Discharge of Toxic Substances for Industrial Dischargers

The permittee shall notify the Director as soon as he/she knows or has reason to believe:
a. That any activity has occurred or will occur which would result in the discharge, in a routine or frequent basis, of any toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the "notification levels" described in 40 CFR Part 122.42(a)(2)[48 FR 14153, April 1983, as amended at 49 FR 38046, September 26, 1984].
b. That any aclivity has occurred or will occur which would result in any discharge, on a non-routine or infrequent basis, of a toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the "notification levels" described in 40 CFR Part 12242(a)(2)[48 FR 14153, April 1. 1983, as amended at 49 FR 38046, September 26, 1984].
9. Duty to Provide Information

The permittee shall furnish to the Director, within a reasonable time, any information which the Director may request to determine whether cause exists lor modilying, revoking and reissuing, or terminating this permit, or to detemine compliance with this permiL The permittee shall also lurnish to the Director, upon request, copies of records required to be kept by this permit. Inlormation shall be submitted in the form, manner, and time frame requested by the Director.
10. Duty to Reapply

If the permittee wishes to continue an activity regulated by this permit after the expiration date of this permit, the permittee must apply for and obtain a new permit. The complete application shall be submitted at least 180 days before the expiration date of this permit. The Director may grant permission to submit an application less than 180 days in advance but no later than the permit expiration date. Continuation of expiring permits shall be governed by regulations promulgated in ADPCE Regulation No. 6.
11. Signatory Requirements

All applications, reports or information submitted to the Director shall be signed and certified.
a. All permit applications shall be signed as follows:
(1) For a corporation: by a responsible corporate officer. For the purpose of this section, a responsible corporate officer means:
(i) A president, secretary, treasurer, or vice-president of the corporation in charge ol a principal business function, or any other person who performs similar policy or decision-making functions for the corporation; or
(ii) the manager of one or more manulacturing, production, or operating facilities employing more than 250 persons or having gross annual sales or expenditures exceeding $\$ 25$ million fin second quarter 1980 dollars), if authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures.
(2) For a partnership or sole proprietorship: by a general partner or the proprielor, respectively; or
(3) For a municipality, Slate, Federal, or other public agency: by either a principal exeçutive officer or ranking elected official. For purposes of this section, a principal executive officer ol a Federal agency includes: (i) the chiel executive ollicer of the agency, or
(ii) A senior executive ollicer having responsibility for the overall :" operations of a principal geographic unit of the agency.
b. All reports required by the permit and other information requested by the Director shall be signed by a person described above or by a duly authorized representative of that person. A person is a duly authorized representative only il:
(1) The authorization is made in writing by a person described above.
(2) The authorization specilied either an individual or a position having responsibility for the overall operation of the regulated facility or activity, such as the position ol plant manager, operator of a well or a well field, superintendent, or position of equivalent responsibility. (A duly authorized representative may thus be either a named individual or any individual occupying a named position): and
(3) The written authorization is submitted to the Director.
c. Certilication. Any person signing a document under this section shall make the. following certification:
"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible lor gathering the inlormation, the information submitted is, to the best of my knowledge and beliel, true, accurate, and complete. I am aware that there are significant penalties for submitting lalse information, including the possibility of fine and imprisonment lor knowing violations."
12. Availability of Reports

Except for data determined to be conlidential under 40 CFR Part 2 and Regulation 6, all reports prepared in accordance with the terms of this permit shall be available for public inspection at the offices of the Department of Pollution Controt and Ecology. As required by the Regulations, the name and address of any permit applicant or permittee, permit applications, permits and effluent data shall not be considered conlidential.
13. Penalties for Falsification of Reports

The Arkansas Air and Water Pollution Control Act provides that any person who knowingly makes any lalse statement, representation, or certification in any application, record, report, plan or other document tiled or required to be maintained under this permit shall be subject to civil penalties specified in Part II.A.2. and/or criminal penallies under the authority of the Arkansas Water and Air Pollution Control Act (Act 472 of 1949, as amended).

PART III OTHER CONDITIONS

7.

The operator of this wastewater treatment facility shall be licensed by the State of Arkansas in accordance with Act 211 of 1971, Act 1103 of 1991, Act 556 of 1993, and Regulation No. 3, as amended.

For Fecal Coliform Bácteria (FCB) report the monthly average as a 30 -day geometric mean in colonies per 100 ml .

The permittee shall not cause or allow the permitted facility to emit odors which unreasonably interfere with enjoyment of life or use of property in the surrounding area.

For publicly owned treatment works, the 30 -day average percent removal for Biochemical Oxygen Demand and Total Suspended Solids shall not be less than 80 and 83 percent unless otherwise authorized by the permitting authority in accordance with 40 CFR 133.102, as adopted by reference in ADEQ Regulation No. 6.
5. Produced sludge shall be disposed of by land application only when meeting the following criteria:

Sewage sludge from treatment works treating domestic sewage (TWTDS) must meet the applicable provisions of 40 CFR Part 503;

The sewage sludge has not been classified as a hazardous waste under state or federal regulations;
The permittee shall give at least 120 days prior notice to the Director of any change planned in the permittee's sludge disposal practice or land use applications, including types of crops grown (if applicable).
The permittee shall report all overflows with the Discharge Monitoring report (DMR) submittal. These reports shall be summarized and reported in tabular format. The summaries shall include: the date, time, duration, location, estimated volume, and cause of overflow; observed environmental impacts from the overflow; action taken to address the overflow; and ultimate discharge location if not contained (e.g., storm sewer system, ditch, tributary.) Overflows which endanger health or the environment shall be orally

Permit Number: AR0021806
Page 2 of Part III
reported to this department (Enforcement Section of Water Division), within 24 hours from the time the permittee becomes aware of the circumstance. A written report of overflows which endanger health or the environment, shall be provided within 5 days of the time the permittee becomes aware of the circumstance.

8. Contributing Industries and Pretreatment Requirements

a. The permittee shall operate an industrial pretreatment program in accordance with Section 402 (b) (8) of the Clean Water Act, the General Pretreatment Regulations (40 CFR Part 403) and the approved POTW pretreatment program submitted by the permittee. The pretreatment program was approved on November 1, 1982 and modified on April 6, 1999. The POTW pretreatment program is hereby incorporated by reference and shall be implemented in a manner consistent with the following requirements:
i. Industrial user information shall be updated at a frequency adequate to ensure that all IUs are properly characterized at all times.
ii.

The frequency and nature of industrial user compliance monitoring activities by the permittee shall be commensurate with the character, consistency and volume of waste. However, in keeping with the requirements of 40 CFR 403.8(f)(2)(v), the permittee must inspect and sample the effluent from each Significant Industrial User at least once a year. This is in addition to any industrial self-monitoring activities;
iii. The permittee shall enforce and obtain remedies for noncompliance by any industrial users with applicable pretreatment standards and requirements.
iv. The permittee shall control through permit, order, or similar means, the contribution to the POTW by each Industrial User to ensure compliance with applicable Pretreatment Standards and Requirements. In the case of Industrial Users identified as significant under 40 CFR 403.3 (t), this control shall be achieved through permits or equivalent individual control mechanisms issued to each
such user. Such control mechanisms must be enforceable and contain, at a minimum, the following conditions:

Statement of duration (in no case more than five years;

Statement of non-transferability without, at a minimum, prior notification to the POTW and provision of a copy of the existing control mechanism to the new owner or operator;

Effluent limits based on applicable general pretreatment standards, categorical pretreatment standards, local limits, and State and local law;

Self-monitoring, sampling, reporting, notification and recordkeeping requirements, including an identification of the pollutants to be monitored, sampling location, sampling frequency, and sample type, based on the applicable general pretreatment standards in 40 CFR 403, categorical pretreatment standards, local limits, and State and local law;

Statement of applicable civil and criminal penalties for violation of pretreatment standards and requirements, and any applicable compliance schedule. Such schedules may not extend the compliance date beyond federal deadlines.
v. The permittee shall evaluate, at least once every two years, whether each Significant Industrial User needs a plan to control slug discharges. If the POTW decides that a slug control plan is needed, the plan shall contain at least the minimum elements required in 40 CFR 403.8 (f)(2)(v).

The permittee shall provide adequate staff, equipment, and support capabilities to carry out all elements of the pretreatment program; and,
vii.

The approved program shall not be modified by the permittee without the prior approval of the Department.
b.

The permittee shall establish and enforce specific limits to implement the provisions of 40 CFR Parts 403.5(a) and (b), as required by 40 CFR Part 403.5(c). Each POTW with an approved pretreatment program shall continue to develop these limits as necessary and effectively enforce such limits.

The permittee shall, within sixty(60) days of the effective date of this permit, (1) submit a written certification that a technical evaluation has demonstrated that the existing technically based local limits (TBLL) are based on current state water quality standards and are adequate to prevent pass through of pollutants, inhibition of or interference with the treatment facility, or (2) submit a written notification that a technical evaluation revising the current TBLL and a draft sewer use ordinance which incorporates such revisions will be submitted within 12 months of the effective date of this permit.

All specific prohibitions or limits developed under this requirement are deemed to be conditions of this permit. The specific prohibitions set out in 40 CFR Part 403.5(b) shall be enforced by the permittee unless modified under this provision.
c. The permittee shall analyze the treatment facility influent and effluent for the presence of the toxic pollutants listed in 40 CFR 122 Appendix D (NPDES Application Testing Requirements) Table II at least once/six months and the toxic pollutants in Table III at least once/quarter. If, based upon information available to the permittee, there is reason to suspect the presence of any toxic or hazardous pollutant listed in Table V, or any other pollutant, known or suspected to adversely affect treatment plant operation, receiving water quality, or solids disposal procedures, analysis for those pollutants shall be performed at least once/quarter on both the influent and effluent.
i. The influent and effluent samples collected shall be composite samples consisting of at least 12 aliquots collected at approximately equal intervals over a representative 24 hour period and composited according to flow. Sampling and analytical procedures shall be in accordance with guidelines established in 40

Permit Number: AR0021806 Page 5 of Part III

CFR 136. Where composite samples are inappropriate, due to sampling, holding time, or analytical constraints, at least four (4) grab samples, taken at equal intervals over a representative 24 hour period, shall be taken.
d. The permittee shall prepare annually a list of Industrial Users which during the preceding twelve months were in significant noncompliance with applicable pretreatment requirements. For the purposes of this Part, significant noncompliance shall be determined based upon the more stringent of either criteria established at 40 CFR Part 403.8(f) (2) (vii) [rev. 7/24/90] or criteria established in the approved POTW pretreatment program. This list is to be published annually in the largest daily newspaper in the municipality during the month of March.

In addition, during the month of March the permittee shall submit an updated pretreatment program status report to $A D E Q$ containing the following information:
i.

An updated list of all significant industrial users. For each industrial user listed, the following information shall be included:
(a)
(b)
(4)

Standard Industrial Classification (SIC) code and categorical determination.

Control document status. Whether the user has an effective control document, and the date such document was last issued, reissued, or modified, (indicate which industrial users were added to the system (or newly identified) within the previous 12 months).

A summary of all monitoring activities performed within the previous 12 months. The following information shall be reported:
total number of inspections performed; total number of sampling visits made;

Status of compliance with both effluent limitations and reporting requirements.

Permit Number: AR0021806
Page 6 of Part III
Compliance status shall be defined as follows:
(a)
(b)
(c)

Compliant (C) - no violations during the previous 12 month period;

Non-compliant (NC) - one or more violations during the previous 12 months but does not meet the criteria for significant noncompliant industrial users.

Significant Noncompliance (SN) - in accordance with requirements described in d. above.

For significantly noncompliant industrial users, indicate the nature of the violations, the type and number of actions taken (notice of violation, administrative order, criminal or civil suit, fines or penalties collected, etc.) and current compliance status. If ANY industrial user was on a schedule to attain compliance with effluent limits, indicate the date the schedule was issued and the date compliance is to be attained.

ii.	A list of all significant industrial users whose authorization to discharge was terminated or revoked during the preceding 12 month period and the reason for termination.
iii.	A report on any interference, pass through, upset or POTW permit violations known or suspected to be caused by industrial contributors and actions taken by the permittee in response.
iv.	The results of all influent, effluent analyses performed pursuant to paragraph (c) above;
v.	A copy of the newspaper publication of the significantly noncompliant industrial users giving the name of the newspaper and the date published; and
vi.	The information requested may be submitted in tabular form as per the example tables provided for your convenience (See Attachments

> A, B and C); and
vii. The monthly average water quality based effluent concentration necessary to meet the state water quality standards as developed in the approved technically based local limits.
e.

The permittee shall provide adequate notice to the Department of the following:
i. Any new introduction of pollutants into the treatment works from an indirect discharger which would be subject to Section 301 and 306 of the Act if it were directly discharging those pollutants; and
ii. Any substantial change in the volume or character of pollutants being introduced into the treatment works by a source introducing pollutants into the treatment works at the time of issuance of the permit.

Adequate notice shall include information on (i) the quality and quantity of effluent to be introduced into the treatment works, and (ii) any anticipated impact of the change on the quality or quantity of effluent to be discharged from the POTW.

Permit Number: AR0021806
Page 8 of Part III
MONITORING RESULTS (1) FOR THE ANNUAL PRETREATMENT REPORT REPORTING YEAR:
TREATMENT PLANT : City of AVERAGE POTW FLOW: MGD \% IU FLOW: \%

(1) It is advised that the influent and effluent samples are collected considering flow detention time through each plant. Analytical MQLs should be used so that the data can also be used for Local Limits assessment and NPDES application purpose.
(2) Record the name of any pollutants [40 CFR 122, Appendix D, Table II and/or Table V] detected and the quantity in which they were detected.
MAI Maximum Allowable Headworks Level.
WQ Water Quality.
Permit Number: AR0021806
ATTACHMENT A
UPDATED SIGNIFICANT INDUSTRIAL USERS LIST

Industrial User	SIC Code	Categorical Determination	Control Document		New User	Times Inspected	Times Sampled	Compliance Status				Effluent Limits	
					Reports								
			Y / N	Last Action				BMR	$\begin{aligned} & \text { 90-day } \\ & \text { Compliance } \end{aligned}$	Semi Annual	Self Monitoring		
									.-				
		-				.							
							-						
					-								
				.				;					

Permit Number: AR0021806 Page 10 of Part II
ATTACHMENT B
SIGNIFICANT VIOLATIONS - ENFORCE

ATTACHMENT C

PRETREATMENT PERFORMANCE SUMMARY (PPS)
NOTE: ALL QUESTIONS REFER TO THE INDUSTRIAL PRETREATMENT PROGRAM AS APPROVED BY THE EPA. THE PERMITTEE SHOULD NOT ANSWER THE QUESTIONS BASED ON CHANGES MADE TO THE APPROVED PROGRAM WITHOUT DEPARTMENT AUTHORIZATION.

I. General Information

Control Authority Name \qquad
Address \qquad
City \qquad State/Zip \qquad
Contact Person \qquad
(Position)
Contact Telephone \qquad
NPDES Permit Nos. \qquad
Reporting Period
(Beginning Month and Year)
(Ending Month and Year)
Total Number of Categorical AUs \qquad
Total Number of Significant Noncategorical Us

> II. Significant Industrial User Compliance $$
\frac{\text { SIGNIFICANT INDUSTRIAL USERS }}{\text { Categorical NonCategorical }}
$$

1) No. Of SIUs Submitting BMRs/Total

No. Required. $/$
N/A*
2) No. of SIUs Submitting 90-Day Compliance Reports/No. Required. N/A*
3) No. Of SIUs Submitting Semiannual Reports/ Total No. Required. \qquad
4) No. of SIUs Meeting Compliance Schedule/ Total No. Required to Meet Schedule \qquad
5) No. of SIUs in Significant Noncompliance/ Total No. of SIUs
6) Rate of Significant Noncompliance for all SIUs (categorical and noncategorical) . . .

\qquad

Total No. Required.

5) Total No.

\qquad
III. Compliance Monitoring Program
$\frac{\text { SIGNIFICANT INDUSTRIAL USERS }}{\text { Categorical NonCategorical }}$

1) No. of Control Documents Issued/Total No. Required.-
2) No. of Nonsampling Inspections Conducted.
3) No. of Sampling Visits Conducted \qquad
1
4) No. of Facilities Inspected (nonsampling)
5) No. Of Facilities Sampled
IV. Enforcement Actions

SIGNIFICANT INDUSTRIAL USERS Categorical NonCateqorical

1) No. Of Compliance Schedules Issued/No. of Schedules Required

2) No. Of Notices of Violations Issued to SIUs
3) No. Of Administrative Orders Issued to SIUs
4) No. Of Civil Suits Filed.
5) No. Of Criminal Suits Filed
.
attach newspaper publication).
6) Amount of Penalties Collected (total dollars/IUs assessed)
7) Other Actions (sewer bans, etc.).

The following certification must be signed in order for this form to be considered complete:

I certify that the information contained herein is completeand accurate to the best of my knowledge.

Permit Number: AR0021806
Page 13 of Part III
9.

WHOLE EFFLUENT TOXICITY TESTING (7-DAY CHRONIC NOEC FRESHWATER)

1. SCOPE AND METHODOLOGY
a. The permittee shall test the effluent for toxicity in accordance with the provisions in this section.

APPLICABLE TO FINAL OUTFALL(S): 001
CRITICAL DILUTION (\%): 20
EFFLUENT DILUTION SERIES (\%): 8, 11, 15, 20, 27
COMPOSITE SAMPLE TYPE: Defined at PART I
TEST SPECIES/METHODS: 40 CFR Part 136
Ceriodaphnia dubia chronic static renewal survival and reproduction test, Method 1002.0, EPA/600/4-91/002 or the most recent update thereof. This test should be terminated when 60% of the surviving females in the control produce three broods or at the end of eight days, whichever comes first.

Pimephales promelas (fathead minnow) chronic static renewal 7 -day larval survival and growth test, Method 1000.0, EPA/600/4-91/002, or the most recent update thereof. A minimum of five (5) replicates with eight (8) organisms per replicate must be used in the control and in each effluent dilution of this test.
b. The NOEC (No Observed Effect Concentration) is defined as the greatest effluent dilution above which lethality that is statistically different from the control (0% effluent) at the 95% confidence level does not occur.
c. This permit may be reopened to require whole effluent toxicity limits, chemical specific effluent limits, additional testing, and/or other appropriate actions to address toxicity. critical dilution.

2. PERSISTENT LETHALITY

The requirements of this subsection apply only when a toxicity test demonstrates significant lethal effects at or below the critical dilution. Significant lethal effects are herein defined as a statistically significant difference at the 95\% confidence level between the survival of the appropriate test organism in a specified effluent dilution and the control (0% effluent).
a. Part I Testing Frequency Other Than Monthly
i. The permittee shall conduct a total of two (2) additional tests for any species that demonstrates significant lethal effects at or below the critical dilution. The two additional tests shall be conducted monthly during the next two consecutive months. The permittee shall not substitute either of the two additional tests in lieu of routine toxicity testing. The full report shall be prepared for each test required by this section in accordance with procedures outlined in Item 4 of this section and submitted with the period discharge monitoring report (DMR) to the permitting authority for review.
ii. If one or both of the two additional tests demonstrates significant lethal effects at or below the critical dilution, the permittee shall initiate Toxicity Reduction Evaluation (TRE) requirements as specified in Item 5 of this section. The permittee shall notify $A D E Q$ in writing within 5 days of the failure of any retest, and the TRE initiation date will be the test completion date of the first failed retest. A TRE may be also be required due to a demonstration of persistent significant sub-lethal effects or intermittent lethal effects at or below the critical dilution, or for failure to perform the required retests.
iii. If one or both of the two additional tests demonstrates significant lethal effects at or below the critical dilution, the permittee shall henceforth increase the frequency of testing for this species to once per quarter for the life of the permit.
iv. The provisions of Item $2 . a$ are suspended upon submittal of the TRE Action Plan.
b. Part I Testing Frequency of Monthly

The permittee shall initiate the Toxicity Reduction Evaluation (TRE) requirements as specified in Item 5 of this section when any two of three consecutive monthly toxicity tests exhibit significant lethal effects at or below the critical dilution. A TRE may be also be required due to a demonstration of persistent significant sub-lethal effects or intermittent lethal effects at or below the critical dilution, or for failure to perform the required retests.
3. REQUIRED TOXICITY TESTING CONDITIONS

a. Test Acceptance

The permittee shall repeat a test, including the control and all effluent dilutions, if the procedures and quality assurance requirements defined in the test methods or in this permit are not satisfied, including the following additional criteria:
i. The toxicity test control (0% effluent) must have survival equal to or greater than 80%.
ii. The mean number of Ceriodaphnia dubia neonates produced per surviving female in the control (0% effluent) must be 15 or more.
iii. 60% of the surviving control females must produce three broods.
iv. The mean dry weight of surviving fathead minnow larvae at the end of the 7 days in the control $(0 \%$ effluent) must be 0.25 mg per larva or greater.
v. The percent coefficient of variation between replicates shall be 40% or less in the control (0% effluent) for: the young of surviving females in the Ceriodaphnia dubia reproduction test; the growth and survival endpoints of the fathead minnow test.
vi. The percent coefficient of variation between replicates shall be 40% or less in the critical dilution, unless significant lethal or nonlethal effects are exhibited for: the young of surviving females in the Ceriodaphnia dubia reproduction test; the growth and survival endpoints of the fathead minnow test.

Test failure may not be construed or reported as invalid due to a coefficient of variation value of greater than
40%. A repeat test shall be conducted within the required reporting period of any test determined to be invalid.
b. Statistical Interpretation
i. For the Ceriodaphnia dubia survival test, the statistical analyses used to determine if there is a significant difference between the control and the critical dilution shall be Fisher's Exact Test as described in EPA/600/4-91/002 or the most recent update thereof.
ii. For the Ceriodaphnia dubia reproduction test and the fathead minnow larval survival and growth test, the statistical analyses used to determine if there is a significant difference between the control and the critical dilution shall be in accordance with the methods for determining the No Observed Effect Concentration (NOEC) as described in EPA/600/4-91/002 or the most recent update thereof.
iii. If the conditions of Test Acceptability are met in Item 3.a above and the percent survival of the test organism is equal to or greater than 80% in the critical dilution concentration and all lower dilution concentrations, the test shall be considered to be a passing test, and the permittee shall report an NOEC of not less than the critical dilution for the DMR reporting requirements found in Item 4 below.

c. Dilution Water

i. Dilution water used in the toxicity tests will be receiving water collected as close to the point of discharge as possible but unaffected by the discharge. The permittee shall substitute synthetic dilution water of similar pH , hardness, and alkalinity to the closest downstream perennial water for;
(A) toxicity tests conducted on effluent discharges to receiving water classified as intermittent streams; and
(B) toxicity tests conducted on effluent discharges where no receiving water is available due to zero flow conditions.
ii. If the receiving water is unsatisfactory as a result of instream toxicity (fails to fulfill the test acceptance criteria of Item 3.a), the permittee may substitute synthetic dilution water for the receiving
water in all subsequent tests provided the unacceptable receiving water test met the following stipulations:
(A) a synthetic dilution water control which fulfills the test acceptance requirements of Item 3.a was run concurrently with the receiving water control;
(B) the test indicating receiving water toxicity has been carried out to completion (i.e., 7 days);
(C) the permittee includes all test results indicating receiving water toxicity with the full report and information required by Item 4 below; and
(D) the synthetic dilution water shall have a pH , hardness, and alkalinity similar to that of the receiving water or closest downstream perennial water not adversely affected by the discharge, provided the magnitude of these parameters will not cause toxicity in the synthetic dilution water.

d. Samples and Composites

i. The permittee shall collect a minimum of three flow-weighted composite samples from the outfall(s) listed at Item 1.a above.
ii. The permittee shall collect second and third composite samples for use during 24 -hour renewals of each dilution concentration for each test. The permittee must collect the composite samples such that the effluent samples are representative of any periodic episode of chlorination, biocide usage or other potentially toxic substance discharged on an intermittent basis.
iii. The permittee must collect the composite samples so that the maximum holding time for any effluent sample shall not exceed 72 hours. The permittee must have initiated the toxicity test within 36 hours after the collection of the last portion of the first composite sample. Samples shall be chilled to 4 degrees Centigrade during collection, shipping, and/or storage.
iv. If the flow from the outfall(s) being tested ceases during the collection of effluent samples, the
requirements for the minimum number of effluent samples, the minimum number of effluent portions and the sample holding time are waived during that sampling period. However, the permittee must collect an effluent composite sample volume during the period of discharge that is sufficient to complete the required toxicity tests with daily renewal of effluent. When possible, the effluent samples used for the toxicity tests shall be collected on separate days if the discharge occurs over multiple days. The effluent composite sample collection duration and the static renewal protocol associated with the abbreviated sample collection must be documented in the full report required in Item 4 of this section.
v. MULTIPLE OUTFALLS: If the provisions of this section are applicable to multiple outfalls, the permittee shall combine the composite effluent samples in proportion to the average flow from the outfalls listed in Item l.a above for the day the sample was collected. The permittee shall perform the toxicity test on the flow-weighted composite of the outfall samples.

4. REPORTING

a. The permittee shall prepare a full report of the results of all tests conducted pursuant to this section in accordance with the Report Preparation Section of EPA/600/4-91/002, or the most current publication, for every valid or invalid toxicity test initiated whether carried to completion or not. The permittee shall retain each full report pursuant to the provisions of PART II.C. 3 of this permit. The permittee shall submit full reports upon the specific request of the Department. For any test which fails, is considered invalid or which is terminated early for any reason, the full report must be submitted for review.
b. A valid test for each species must be reported on the DMR during each reporting period specified in PART I of this permit unless the permittee is performing a TRE which may increase the frequency of testing and reporting. Only ONE set of biomonitoring data for each species is to be recorded on the DMR for each reporting period. The data submitted should reflect the LOWEST survival results for each species during the reporting period. All invalid tests, repeat tests (for invalid tests), and retests (for tests previously failed) performed during the reporting period must be attached to the $D M R$ for $A D E Q$ review.
c. The permittee shall submit the results of each valid toxicity test on the $D M R$ for that reporting period in accordance with PART II.D. 4 of this permit, as follows below. Submit retest information clearly marked as such with the following month's DMR. Only results of valid tests are to be reported on the DMR.
i. Pimephales promelas (fathead minnow)
(A) If the No Observed Effect Concentration (NOEC) for survival is less than the critical dilution, enter a "1"; otherwise, enter a "0" for Parameter No. TLP6C.
(B) Report the NOEC value for survival, Parameter No. TOP6C.
(C) Report the NOEC value for growth, Parameter No. TPP6C.
(D) If the No Observed Effect Concentration (NOEC) for growth is less than the critical dilution, enter a "1"; otherwise, enter a "0" for Parameter No. TGP6C.
(E) Report the highest (critical dilution or control) Coefficient of Variation, Parameter No. TQP6C.
ii. Ceriodaphnia dubia
(A) If the NOEC for survival is less than the critical dilution, enter a "l"; otherwise, enter a "0" for Parameter No. TLP3B.
(B) Report the NOEC value for survival, Parameter No. TOP3B.
(C) Report the NOEC value for reproduction, Parameter No. TPP3B.
(D) If the No Observed Effect Concentration (NOEC) for reproduction is less than the critical dilution, enter a "1"; otherwise, enter a "0" for Parameter No. TGP3B.
(E) Report the higher (critical dilution or control) Coefficient of Variation, Parameter No. TQP3B.

5. Monitoring Frequency Reduction

a. The permittee may apply for a testing frequency reduction upon the successful completion of the first four consecutive quarters of testing for one or both test species, with no lethal or sub-lethal effects demonstrated at or below the critical dilution. If granted, the monitoring frequency for that test species may be reduced to not less than once per year for the less sensitive species (usually the ffathead minnow) and not less than twice per year for the more sensitive test species (usually the Ceriodaphnia dubia).
b. CERTIFICATION - The permittee must certify in writing that no test failures have occurred and that all tests meet all test acceptability criteria in item 3.a. above. In addition the permittee must provide a list with each test performed including test initiation date, species, NOECs for lethal and sub-lethal effects and the maximum coefficient of variation for the controls. Upon review and acceptance of this information the Department will issue a letter of confirmation of the monitoring frequency reduction. A copy of the letter will be forwarded to the Permit Compliance System section to update the permit reporting requirements.
C. SUB-LETHAL FAILURES - If, during the first four quarters of testing, sub-lethal effects are demonstrated to a test species, two monthly retests are required. In addition, quarterly testing is required for that species until the effluent passes both the lethal and sub-lethal test endpoints for the affected species for four consecutive quarters. Monthly retesting is not required if the permittee is performing a TRE.
d. SURVIVAL FAILURES - If any test fails the survival endpoint at any time during the life of this permit, two monthly retests are required and the monitoring frequency for the affected test species shall be increased to once per quarter until the permit is re-issued. Monthly retesting is not required if the permittee is performing a TRE.
e. This monitoring frequency reduction applies only until the expiration date of this permit, at which time the monitoring frequency for both test species reverts to once per quarter until the permit is re-issued.
6. TOXICITY REDUCTION EVALUATION (TRE)
a. Within ninety (90) days of confirming lethality in the retests, the permittee shall submit a Toxicity Reduction

Permit Number: AR0021806
Page 21 tof Part III
Evaluation (TRE) Action Plan and Schedule for conducting a TRE. The TRE Action Plan shall specify the approach and methodology to be used in performing the TRE. A Toxicity Reduction Evaluation is an investigation intended to determine those actions necessary to achieve compliance with water quality-based effluent limits by reducing an effluent's toxicity to an acceptable level. A TRE is defined as a step-wise process which combines toxicity testing and analyses of the physical and chemical characteristics of a toxic effluent to identify the constituents causing effluent toxicity and/or treatment methods which will reduce the effluent toxicity. The TRE Action Plan shall lead to the successful elimination of effluent toxicity at the critical dilution and include the following:
i. Specific Activities. The plan shall detail the specific approach the permittee intends to utilize in conducting the TRE. The approach may include toxicity characterizations, identifications and confirmation activities, source evaluation, treatability studies, or alternative approaches. When the permittee conducts Toxicity Characterization Procedures the permittee shall perform multiple characterizations and follow the procedures specified in the documents "Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures" (EPA-600/6-91/003) and "Toxicity Identification Evaluation: Characterization of Chronically Toxic Effluents, Phase I" (EPA-600/6-91/005F), or alternate procedures. When the permittee conducts Toxicity Identification Evaluations and Confirmations, the permittee shall perform multiple identifications and follow the methods specified in the documents "Methods for Aquatic Toxicity Identification Evaluations, Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R92/080) and "Methods for Aquatic Toxicity Identification Evaluations, Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081), as appropriate.

The documents referenced above may be obtained through the National Technical Information Service (NTIS) by phone at (703) 487-4650, or by writing:

> U.S. Department of Commerce
> National Technical Information Service 5285 Port Royal Road
> Springfield, VA 22161
ii. Sampling Plan (e.g., locations, methods, holdin times, chain of custody, preservation, etc.). effluent sample volume collected for all tests be adequate to perform the toxicity test, toxic characterization, identification and confirmati procedures, and conduct chemical specific analy when a probable toxicant has been identified;

Where the permittee has identified or suspects specific pollutant(s) and/or source(s) of efflu toxicity, the permittee shall conduct, concurrer with toxicity testing, chemical specific analys the identified and/or suspected pollutant(s) anc source(s) of effluent toxicity. Where lethality demonstrated within 48 hours of test initiation, composite sample shall be analyzed independently Otherwise the permittee may substitute a composi sample, comprised of equal portions of the indiv composite samples, for the chemical specific ana sis;
iii. Quality Assurance Plan (e.g., QA/QC implementati corrective actions, etc.); and
iv. Project Organization (e.g., project staff, proje manager, consulting services, etc.).
b. The permittee shall initiate the TRE Action Plan with thirty (30) days of plan and schedule submittal. The permittee shall assume all risks for failure to achie the required toxicity reduction.
c. The permittee shall submit a quarterly TRE Activities port, with the Discharge Monitoring Report in the mon of January, April, July and October, containing information on toxicity reduction evaluation activiti including:
i. any data and/or substantiating documentation whi identifies the pollutant(s) and/or source(s) of effluent toxicity;
ii. any studies/evaluations and results on the treatability of the facility's effluent toxicity
iii. any data which identifies effluent toxicity cont mechanisms that will reduce effluent toxicity to level necessary to meet no significant lethality the critical dilution.
d. The permittee shall submit a Final Report on Toxicity

Reduction Evaluation Activities no later than twenty-eight (28) months from confirming lethality in the retests, which provides information pertaining to the specific control mechanism selected that will, when implemented, result in reduction of effluent toxicity to no significant provide a specific critical dilution. The report will also menting the selected control mechanism.

$$
\mathrm{f}
$$

Quarterly testing during the TRE is a minimum monitoring requirement. EPA recommends that permittees required to perform a TRE not rely on quarterly testing alone to ensure success in the TRE, and that additional screening tests be performed to capture toxic samples for identification of toxicants. Failure to identify the specific chemical compound causing toxicity test failure will normally result in a permit limit for whole effluent toxicity limits per federal regulations at 40 CFR
$122.44(\mathrm{~d})(1)(\mathrm{v})$.

PART IV -

SECTION A - DEFINITIONS

and areinions contained in Section 502 of the Clean Water Act shall apply to this permit in this permit are as follows:

1. "Act" means the Clean Water Act, Public Law 95-217(33. U.S.C. 1251 et seq.) as
amended.
2. "Administrator" means the Administrator of the U.S. Environmental Protection Agency.
3. "Applicable effluent standards and limitations" means all State and Federal effluent standards and limitations to which a discharge is subject under the Act including, but not limited to, effluent limitations, standards of performance, toxic "Applicable water quality standards" and pretreatment standards. discharge is subject under the federal Clean Waler Acl arity standards to which a approved or permitted to remain in effect by thand which have been (k) submission to the Administrator pursuant to by the Administrator following promulgated by the Director pursuant to Section 303 303(a) of the Act, or (b) standards promulgated under regulation Ne. 2 a 303 (b) or 303 (c) of the Act, and
4. "Bypass" quality standards for surface waters of the State of Arkansas). bypass means the intentional diversion of waste strate of Arkansas). treatment facility.
5. "Daily Discharge" means the discharge of day or any 24 -hour period that reasonably repreasured during a calendar purposes of sampling. For pollutants with limitatiosents the calendar day for the "daily discharge" is calculated as the totat mass of thessed in terms of mass, over the sampling day. For pollutants with limitass of the pollutant discharged measurement, the "daily discharge" is calculated as the avessed in other units of the pollutant over the sámpling day. "Daily discharge" determination of composite made using a composite sample shall be the concentranation of tion of cosite sample. When grab samples are used, the "daily discharge" determinathe samples collected during that sampling daverage (weighted by flow value) of all 7. "Daily Average" (also known as mompling day.
highest allowable average of "doly average) discharge fimitations means the calculated as the sum of all "daily discharge(s)" " over a calendar month, month divided by the number of "daily discharge(s)" measured during a calendar When the permit establishes daily average concentration et during that month. conditions, the daily average concentrationcentration effluent limitations or (weighted by flow) of all "daily discharge(s)" of concentration arithmetic average the calendar month where $C=$ daily concentration $F=$ daily flowand " during of daily samples; daily average discharge $=$ daily concen, $F=$ daily flow and $n=$ number

$$
\frac{\mathrm{ClF1}^{2}+\mathrm{C} 2 \mathrm{~F} 2+\ldots \mathrm{CnFn}}{\mathrm{~F} 1+\mathrm{F} 2+\ldots+\mathrm{Fn}}
$$

8. "Daily Maximum" discharge limitation means the
discharge" during the calendar month. means the highest allowable "daily
9. "Department" means the Ardar month. (ADPCE).
artment of Pollution Control and Ecology and/or the Director of the Arkansas Department of Pollution Control a the Agency . "Grab sample" means an individual Department of Pollution Control and Ecology. conjunction with an instantaneous flow measurement
10. "Industrial User" means a nondon measurement.
introducing pollutants to a publicly-owned treatment works.
11. "National Pollutant Discharge Eliminatiod treatment works.
issuing, modifying, revoking and reissuing Sytem" means the national program for permits, and imposing and enforcing pretreatment 307, 402, 318, and 405 of the Clean Water Act.
12. "POTW" means a Publicly Owned Treatment Wort.
13. "Severe property damage" means substantiar Works. damage to the treatment facilities which causes physical damage to property. substantial and permanent loss of natural resources to become inoperable, or expected to occur in the absence of a bypass. Severe which can reasonably be mean economic loss caused by delays in productions.

Page 1 of Part |
16. "ADPCE" means the Arkansas Department of Pollution Control and Ecology. created in sewage by the unit processes of and precipitate separated from o Sewage as used in this definition means a publicly-owned treatment works humans, households, commercial establishin wastes, including wastes fromrunoff, that are discharged to or otherwise enter a publicly-ownd storm water works.
18. "7-day average" discharge limitation, other than for fecal coliform bacteria, is the highest allowable arithmetic means of the values for all effluent samples collected during the calendar week The 7 -day average for fecal coliform bacteria is the seometric mean of the values of all eflluent samples collected during the calendar calendar month. For repoport the highest 7 -day average oblained during the reported as occurring in the month in which the Saturday of values should be falls in.
19. "30-day average", other than for fecal coliform bacteria is the daily values for all eflluent samples collecteria, is the arithmetic mean of calculated as the sum of all daily discharges mealled during a calendar month. divided by the number of daily discharges measured during a calendar month 30 -day average for lecal coliform bacteria is measured during that month. The all effluent samples collected during a calendar month.
20. "24-hour composite sample" collected at equal time intervals over the minimum of 12 effluent portions proportional to flow or a sample collected at frequentiour period and combined 21. over the 24 -hour period.
together composite sample" consists of 12 eflluent portions collected no closer intervals shall include the highest flow according to flow. The daily sampling
22. "6-hour composile sampl" together than one hour (with the first portion elfluent portions collected no closer and composited according to flow.
23. "3-hour composite sample" consist together than one hour (with the first portion collected no eartier than the no closer and composited according to flow. 24. "Ireatment works" means any devi recycling. and reclamation of municipal systems used in the storage, treatment, nature to implement sechion 201 of the Act or necessary indual wastes, of a liquid the most economic cost over the estimated or necessary to recycle reuse water at sewers, sewage collection systems, pump of the works, including intercepting alterations thereof; elements essential to provide a rer and other equipment, and as standby treatment units and clear well facidies a reliable recycled supply such acquisition of the land that will be an integral part of the thorks, including site
used for ultimate disposal of residues resulting from such treatment process or is "Upset" means an exceptional incidest ing from such treatment.
temporary noncompliance with ident in which there is unintentional and because of lactors beyond the technology-based permit effluent limitations not include noncompliance to the extent control of the permittee. Any upset does designed treatment lacilities, lack of preventive meintional etror, improperly improper operations.
nitive maintenance, or cateless or
collected during a 24 -hour period at peak loads.
27. "Dissolved oryeen" shall be detined as loads.
a. When limited in the be delined as follows:
acceplable monthly, average value, determined by avall mean the lowest laken during the calendar month;
b. When limited in the permit as an
that no value measured during the reportiog period man lall belue, shall mean value.
28. The term "MGO" shall mean million gallons per day
29. The term "mg/l" shall mean milligrams per per day.
30. The term " $\mu \mathrm{g} / \mathrm{l}$ " shall mean microgams per liter or parts per million (ppm).
 COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)
FLOW MUST EE NONTTORED AND FEFCFTED SGS MUNTHL

a
1.1
PERMITTEE NAME/ADDRESS (Include Facility NameLocation ifDifferent)

Form Apn- ved
OMB N $10-0004$, $\frac{\pi}{8}$
$\frac{7}{2}$
$7 \forall M I=$

* N DISCHARGE

6
3
2
2
2
e

Cuantir or loome
$2022 L$ 밴

Af 72206 EARGER FBCK UFURE CREEK
I E GAPITGL
ROCK QUGEE CREEK
1 ER CAPITGL
TTLE ROCK QUGEE CREEK
1 ER CAPITGL
TTLE ROCK QUGEE CREEK
1 ER CAPITGL
TTLE ROCK 1.1
 15 ACILTY LITTHE LOCATION TTTLE
PARAMETER L．BARGER OCATION TTTLE ATTM：
－

PARAMETER		QUANTITY OR LOADING			Quality or Concentration				$\begin{aligned} & \text { NO. } \\ & \text { EX } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { FREOUENCY } \\ \text { OF } \\ \text { ANASSIS } \end{array}$	SAMPLE TYPE
		average	MAXIMUM．	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS			
$\begin{aligned} \text { BOD: } 5 \mathrm{DAY} \\ (20 \mathrm{DEG} \quad \mathrm{C} \end{aligned}$	SAMPLE MEASUREMENT	2378	＊＊＊＊＊＊	$\begin{aligned} & (26) \\ & \operatorname{LS} / D Y \end{aligned}$	＊＊＊＊＊＊	14.6	14.9	$\begin{gathered} 193 \\ \mathrm{HG} / \mathrm{L} \end{gathered}$	0	Daily	24HFC
$\begin{array}{lccc} 00310 & 1 & 0 & 0 \\ \text { EFFLUENT GROSS VALUE } \end{array}$	PERMIT REQUIREMENT	$\begin{array}{r} 400= \\ \text { 4va } \end{array}$	$* * * * *$		＊＊＊＊＊＊＊	$\begin{array}{r} 201 \\ M \mathrm{M} \cdot \mathrm{Al} \text { a } \end{array}$				AIL－Y	－ 3 mpz 4
\％H 00400 1 0 0 EFFLUENT GROSS VALUE	SAMPLE MEASUREMENT	来办为苏	＊＊＊＊＊＊		6.82	＊＊＊＊＊＊	7.12	(12)	0	Daily	Gra
	PERMIT REQUIREMENT	$* * * * *$	＊＊\％\％＊＊	$\left\{\begin{array}{l} * * * \\ * * * * \end{array}\right.$	MINTMUN	$x * * * * *$		SU		M淮LY	ARAE
SOLTES T TDTAL SUSPENDED．	SAMPLE MEASUREMENT	2344	＊＊＊＊＊＊	（2¢）	＊＊＊＊＊＊	14.4	14.9	(19)	0	Daily	24HFC
$\begin{aligned} & \text { OWEGO } 1 \\ & \text { EFFLUEMT GFOSS VALUE } \end{aligned}$	PERMIT REQUIREMENT		4＊＊＊＊＊	LBS／DY	＊＊＊＊＊	$\begin{gathered} \text { ys } \\ \text { May } A v e . \end{gathered}$		G / L		SILY	SOMF：24
FLDW THRL COM TFEATMENT FLAK	SAMPLE MEASUREMENT	19.3	32.66	（03）	＊＊＊世＊＊	前＊＊＊＊	\％ $2 * * * * *$		0	Cont．	TM
$\left\|\begin{array}{ccc} \text { EFOSO I } & 0 & 0 \\ \text { EFLT } \end{array}\right\|$	REQUIREMENT		$\begin{aligned} & \text { REPERT } \\ & \text { wALLY wX } \end{aligned}$	MGD	＊＊＊＊＊	$* * * * * *$	*			ATL． 3	TOTAL 2
COLIFOFM，FECALGENEFALTAEE $1 \quad 1$ GEFFLUENT GRUSS VALUE	SAMPLE MEASUREMENT	＊＊＊＊＊＊	\％＊＊＊＊＊＊		米＊＊＊＊＊	61	． 166	(13)	0	Daily	Grab
	PERMIT REOUIREMENT	＊＊＊＊＊＊		＊＊＊ 长为为步	＊＊＊＊＊＊	$\begin{gathered} 1 \mathrm{un} \\ \text { Soba } \\ \text { 納 } \end{gathered}$		$160 \mathrm{Hm}$		SMİY	FFaE
EFFLUENT GRUSS VALUE	SAMPLE MEASUREMENT										
	PERMIT REOUIREMENT										
	SAMPLE MEASUREMENT										
	PERMIT REOUIREMENT										
NAME／TITLE PRINCIPAL EXECUTIVE OFFICER		qualined personne		were ormatlon				TELEPHONE		DA	

NAME／TITLE PRINCIPAL EXECUTIVE OFFICER $\begin{gathered}\text { I cerrity } \\ \text { prepared under my direction or supervision in in mecordance with a yyitem designed }\end{gathered}$

 TYPED OR PRINTED Including the possibility or Ine and Imprisonment for knowing ryjolatiops COMMENTS AND EXPLANATION OF ANY VIOLATIONS（Reforence al／，attachments here） FLUW MIST EE NDMITOFED AND FEFORTED SAS MONTHLY GALIDNG FEF DAY）：FEFGRT INETANTANEOUS NAXIMLM TGTAL RESTDUAL CHLOFTNE． EPAForm 3320－1（Rev 3／99）Previous editions may be used
PERMITTEE NAME/ADDRESS Inctuc/ Feculty NamaLoceation U DIGommy NAME LTTTI F FGCK, CITY DF (LFW ADDRESSFGLIF Ξ CREEF゙ WWTF

mato pantur oiscie (PDDES)

$\begin{aligned} & \frac{W}{2} \\ & \frac{0}{y_{2}} \end{aligned}$	莦		8
$\begin{aligned} & \mathrm{N} \\ & \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 0 \end{aligned}$	$\stackrel{1}{c}$	

$\frac{\text { SU }}{(19)}$

 (
诉

i

MA JOR

	$\frac{4}{\frac{4}{4}}$	$\begin{aligned} & \frac{v_{1}}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \end{aligned}$	$\begin{aligned} & \pi \\ & 5 \\ & \hline \end{aligned}$	$\begin{array}{\|c} 9 \\ \frac{9}{2} \\ \frac{5}{5} \\ \hline \end{array}$	$\begin{aligned} & 3 \\ & \frac{L}{T} \\ & 4 \end{aligned}$	$\begin{aligned} & \frac{\%}{N} \\ & \frac{1}{2} \\ & \frac{1}{6} \\ & \hline \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	产
	\＃ \％ 感	$\begin{aligned} & 1 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\frac{\pi}{0}$		合	$\begin{aligned} & 1 \\ & 1 \\ & 4 \end{aligned}$			$\frac{\pi}{3}$	$\underset{\sim}{\pi}$	＞
은	0		¢		\bigcirc					\bigcirc	

NATIONAL POLLUTAN CHAROE ELMINATION SYSTEM (NPDES)

MA.JaR

MA.MOR

NOTE: Read inetructions before complating this form.

AUTHORIZATION TO DISCHARGE UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM AND THE ARKANSAS WATER AND AIR POLLUTION CONTROL ACT

In accordance with the provisions of the Air Pollution Control Act (Act 472 of 1949, as amended, Ark. Code Ann. 8-4-101 et seq.), and the Clean Water Act (33 U.S.C. 1251 et seq.),

Little Rock Wastewater Utility (LRWU)
Fourche Creek Wastewater Treatment Plant (WWTP) 221 E. Capitol Little Rock, AR 72202-2412
is authorized to discharge from a facility located at
Latitude: $34^{\circ} 41^{\prime} 50.03^{\prime \prime}:$ Longitude: 920 $09^{\prime} 47.49^{\prime \prime}$
9500 Birdwood Road, in the Northwest $1 / 4$ of the Southwest $1 / 4$ of Section 23, Township 1 North, Range 11 West, in Pulaski County, Arkansas
to receiving waters named:
Arkansas River in Segment 3 C of the Arkansas River Basin
in accordance with effluent limitations, monitoring requirements, and other conditions set forth in Parts I, II (Version 2), III, and IV (Version 2) hereof.

This permit shall become effective on May $1,1997$.
This permit and the authorization to discharge shall expire at midnight, April 30, 2002.

Signed this 31st day of March 1997

Chief, Water Division

SECTION B. SCHEDULE OF COMPLIANCE

The permittee shall achieve compliance with the effluent limitations specified for discharges in accordance with the following schedule:

```
Compliance with final effluent limits is required on the
effective date of the permit.
```


PART II - SIANDARD CONDITIONS

SECTION A - GENERAL CONDITIONS

1. Duty to Comply

The permittee must comply with all condilions of this permit. Any permit noncompliance conslitutes a violation of the Iederal Clean Water Act and the Arhansas Water and Ar Pollution Control Act and is grounds for enforcement aclion: for permit termination, revocation and reissuance. or modification; or for denial of a permit renewal application. Any values reported in the required Discharge Monitoring Report which are in excess of an effluent limitation specified in Parl I A shall constitute evidence of violation of such effluent limitation and of this permit
2 Penalties for Viotations of Permit Conditions
The Arkansas Water and Air Poliution Control Act provides that any person who violates any provisions of a permit issued under the Act shall be guilty of a misdemeanor and upon conviction thereol shall be subject to imprisonment for not more than one (1) rear, or a fine of not more than ten thousand dollars $(\$ 10,000)$ or by both such line and imprisonment for each day of such violation. Any person who violates any provision of a permit issued under the Act may also be subject to civil penalty in such amount as the court shall find appropriate. not to exceed live thousand dollars ($\$ 5,000$) for each day of such violation. The lact that any such violation may constitute a misdemeanor shall not be a bar to the maintenance of such civil action.
3. Permit Action

This permit may be modilied, revoked and reissued, or terminaled lor cause includine but not limited to, the following:
a. Violation of any lerms or conditions of this permit; or
b. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts; or
c. A change in any conditions that requires either a temporary or permanent reduction or elimination of the authorized discharge; or
d. A determination that the permitted activity endangers human health or the enviconment and can only be regulated to acceptable levels by permit modification or termination.
c. Failure of the permittee to comply with the provisions of ADPCE Regulation No. 9 (Permit lees) as required by condition II \&. 10 herein.
The filing of a request by the permittee lor a permit modilication, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not slay any permit condition.
4. Taxic Pollutants

Notwithstanding Part II...3., if any toxic effluent standard or prohibition fincluding any schedule of compliance specified in such effluent standard or prohibition) is promulgated under Regulation No. 2, as amended (regulation establishing water quality standards for surface waters of the State of Arkansas) or Section 307(a) of the Clean Water Act lor a toxic pollutant which is present in the discharge and that standard or protibition is more stringent than any limitation on the pollutant in this permit, this permit shall be modified or revoked and reissued to conform to the toxic effluent standards or prohibition and the permittee so notilied.
The permittee shall comply with effluent standards or prohibitions established under Regulation No. 2 (Arkansas Water Quality Standards), as amended, or Section 307 (a) of the Clean Water Act for toxic pollutants within the time provided in the regulations that establish those standards or prohibitions, even if the permit has not yet been modified to incorporate the requirement.
5. Civil and Criminal Liability

Except as provided in permit conditions on "Bypassing" (Part II.B.4.a.), and "Upsets" (Part II.B.S.b.), nothing in this permit shall be construed to relieve the permittee from civil penalties for noncompliance. Any false or materially misleading representation or concealment of information required to be reported by the provisions of this permit or applicable state and federal statutes or requlations which defeats the regulatory purposes of the permit may subject the permittee to criminal enforcement pursuant to the Airkansas Water and Air Pollution Control Act (Act 472 of 1949, as amended).
6. Dil and Hazardous Substance Liability

Nothing in this permit shall be construed to prectude tlie institution of any legat action or relieve the permitter from any responsibilties. liabilities, or penalties to which the permittee is or may be subject under Section 311 of the Clean Water Act.

1. State Laws

Nothing in this permit shall be construed to preclude the institution of any legal action or relieve the permittee from any responsibilities, liabilities, or penalties established pursuant to any applicable State law or regulation under authority preserved by Section 510 of the Clean Water Act.
8 Property Rights
The issuance of this permit does not convey any property ughts of any sort. or any exclusive privileges, nor does il authorize any injury lo private property or any invasion of personal rights, nor any intringement of Federal. State or local taws or
regulatione
9. Severability

The provisions of this permit are severable if any provsions of this permit, or the application of any provision of this permil to any circumstance. is held invalid, the application of suchprovisions to other circumstances, and the remainder of this permit shall not be aflected thereby.
10. Permit fees $/$

The permittee shall comply with all applicable permil lee requirements for wastewater discharge permits as described in AOPCE Regulation No. 9 [Regulation for the Fee System for Environmental Permits) Failure to promptly remit all required lees shall be grounds for the Drector to initiale action to terminate this permit under the provisions of 40 CFR 122.64 and 1245 (d). as adopted in AOPCE Regulation No. 6. and the provisions of ADPCE Regutation No. 8.

SECTION B - OPERATION and maintenance of POLLUTION CONTROLS

1. Proper Operation and Maintenance

a. The permittee shalf at all times properly operate and maintain all facilities and srstems of treatment and control (and related appurtenances) which are installed or used by the permittee to achieve complance with the conditions of this-permit. Proper operation and maintenance also includes adequate taboratory controls and appropriale quality assurance procedures. This provision requires the operation of backup or auxiliary lacilities or similar systems which are installed by a permittee only when the operation is necessary to achieve compliance with the conditions of the permit.
b. The permittee shall provide an adequate operating stafl which is duly qualifed to carry out operation, maintenance and lesting functions required to insure compliance with the conditions of this permit
2. Keed to Halt or Reduce Not a Delense

It shall nol be a delense for a permittee in an enforcement action that it would have been necessary to hall or reduce the permitted activity in order to mainlain compliance with the conditions of this permit. Upon reduction, lass, or failure of the treatment lacility. the permitlee shall, to the extent necessary to maintain compliance with its permit, control production or discharges or both until the lacility is restored or allernative method of treatment is provided. This requirement applies. for example when the primary source of power for the treatment lacility is reduced, is lost or alternate power supply fails.

3. Duty to Mitizate

The permittee shall take all reasonable steps to minimize or prevent any discharge in violation of this permit which has reasonable likelihood of adversely alfecting human health or the environment.
4. Bypass of Treatment Facilities
a. Bypass not erceeding limitation. The permittee may allow any bypass to occur which does nol cause effluent limitations to be exceeded, but only if it also is tor essential maintenance to assure ellicient operation. These bypasses are not subject to the provision of Part II.B.4.b. and 4.c.
b. Notice
(1) Anticipated bypass. It the permittee knows in advance of the need for a bypass, it shall submit prior notice, it possible, at least ten days belore the date of the bypass.
(2) Unantucipated bypass. The permittee shall submit notice of an unanticipated bypass as required in Parl II.D.6(24-hour notice).
c. Prohibition ol bypass.
(I) Bypass is prohibited and the Director may take enforcement action against a permittee lor bypass. unless:
(a) Bypass was unavoidable to prevent loss of hife, personal injury. or severe property damage:
(b) There were no leasible atternatives to the bypass, such as the use of auxiliary treatment facilties, retention of untreated wastes. or maintenance during normal periods of equipment downtime. This condition is not satislied if the permittee could have installed adequale backup equipment to prevent a bypass which occurred during normal periods of equipment downlime or prevenive manlenance; and
(c) The permiltee submitted nolices as required by Part 11.8 .4 b .
(2) The Orrector may approve an anlicipaled bypass. after considering its adverse effects. if the director determines that it will meet the three conditions listed above in Part II B \& C C (I).
5. Upsel Conditions
a. Elfect of an upset. An upsel conslilutes an altirmative delense to an action brought for noncompliance with such lechnology based permit elfluent limitations it the requirements of Parl IIBSD of this section are met No determination made during adminstrative review of claims that noncomplaance was caused by upsel, and before an action for noncompliance, is linal administrative action subiect to rudicial review
b. Condibons necessary for a demonstration ol upset A permittee who wishes to establish the allirmative detense of upsel shall demonstrale, through properiy sugned. contemporaneaus operating logs, or other relevant evidence that
(I) An upset occurred and that the permittee can identily the cause(s) of the upset
(2) The permitted lacility was at the time being properiy operated;
(3) The permittee submitted nolice of the upszi as required by Part II.D.6: and
(4) Ilie permiflice coniplied willi any remedial ineasures required by Parl 1183.
c. Burden of prool. In any enforcement proceeding the permittee seeking to establish the occurrence of an upset thas the burden of proot
6. Removed Substances

Solids. sludges. filter backwash, or other pollutants removed in the course of veatment or control of waste waters shall be disposed of in a manner such as to prevent any pollutant from such materials from entering the waters of the state. Written approval for such disposal must be obtaned from the ADPCE
7. Power Failure

The permittee is responsible lor mainlaining adequate saleguards to prevent the discharge of untreated or inadequately treated wastes during electrical power failure either by means of alternate power sources, standby generators, or retention of inadequately treated effluent.

SECTION C - MONITORING AND RECORDS

1. Representative Sampline

Samples and measurements taken as required herein shall be representative of the volume and nature of the monitored discharge during the entire monitoring period. All samples shall be taken at the monitoring points specilied in this permit and, unless otherwise specified, before the effluent joins or is diluted by any other wastestream, body of water, or substance. Monitoring points shall not be changed without notification to and the approval of the Director. Intermittent discharges shall be monitored.
2 Flow Measurements
Appropriate flow measurement devices and methods consistent with accepted scientific practices shall be selected and used to insure the accuracy and reliability of measurements of the volume of monitored discharges. The devices shall be installed. calibrated and maintained to insure the accuracy of the measurements are consistent with the accepted capability of that type of device. Devices selected shall be capable of measuring flows with a maximum deviation of less than $\pm 10 \%$ Irom true discharge rates throughout the range of expected discharge volumes and shall be installed at the monitoring point of the discharge.
3. Monitoring Procedures

Monitoring must be conducted according to test procedures approved under 40 CFR Part 136, unless other test procedures have been specified in this permit. The permittee shall calibrate and perform maintenance procedures on all monitoring and analytical instrumentation at intervals frequent enough to insure accuracy of measurements and shall insure that both calibration and maintenance activities will be conducted. An adequate analytical quality control program, including the analysis of sufficient standards, spikes, and duplicate samples to insure the accuracy of all required analytical results shall be maintained by the permittee or desigrated commercial laboratory. At a minimum, spikes and duplicate samples are to be analyzed on 10s of the samples.
4. Penalties for Tampering

The Arkansas Water and Air Pollution Control Act provides that any person who Ialsifies, tampers with, or knowingly renders inaccurate, any monitoring device or method required to be maintained under the Act shall be guilty of a misdemeanor and upon conviction thereof shall be subject to imprisonment for not more than one (1) reas or a fine of not more than ten thousand dollars $(\$ 10,000)$ or by both such fine and imprisonment.
5. Reporting of Monitoring Results

Monitoring results must be reported on a Discharge Monitoring Report (DMR) form (EPA No. 3320-1). Permittees are required to use preprinted DMR forms provided by ADPCE, unless specific written authorization to use other reporting forms is obtained Irom NDPCE. Monitoring results obtained during the previous calendar month shall ber simamafued and reported on a OMR lorm postmarked no later than the 25 :h day et tne month lollowing the completed reporting period to begin on the effective date of the permit. Ouplicate copies of DMR's signed and certified as required by Part II.d. 11 and all other reports required by Part II.D. (Reporting Requirements), shall be submitted to the Director at the following address: Director
Arkansas Department of Pollution
Control and Ecology
8001 Nationa! Drive
$\overline{\mathrm{P}} 0 \mathrm{~B} 0 \times \overline{\mathrm{B}} \overline{\mathrm{g}} \mathrm{I}$
little Rock, AR 72219-8913
H permittee uses outside laborstory facilities for sampling and/or analysis, the name and address of the contract laboratory shall be included on the DMR

6 Additional Monntoring by the Permitte
If the permittee monitors any pollutant more frequently than required by this permul using lest procedures approved under 40 CFR 136 or as specilied in this permut, the results of this monitoring shall be included in the calculation and reporting of the data submitted in the DMR. Such increased trequency shall also be indicated on the DMR
7. Retention of Records

The permultee shall retain records of all monitoring information. including all calioralion and mantenance records and all orgegal strip charl recordurgs lor continuous monitoring insteumentation, copie; of all reports required by this permit, and records of alldata used to complete the application lor this permit, for a period ol at least 3 years trom the date of the sample, measurement, report or application. This period may be exlended by request of the Director at any time
8. Record Contents

Records and montoring information shall include:
a. The date. exact place. time and methods of sampling or measurements. and preservalives used, il any.
b The individual(s) who performed the sampling or measurements;
c. The date (s) analyses were formed:
d. The individual(s) who performed the analyses:
e. The analytical lechniques or methods used: and

1. The measurements and results of such analyses.
2. Inspection and Entry

The permithee shallaflow the Director, or an authorized representative, upon the
presentation of credentials and other documents as may be required by law, to:
a. Enter upon the permittee's premises where a regulated facility or activity is located or conducted, or where records must be kepl under the conditions of this permit:
b. Have access to and copy. at reasonable times, any records thal must be hept under the conditions of this permit;
c. Inspect al reasonable times any facilities, equipment fincluding monitoring and conlrol equipmentu. praclices. or operations regulated or required under this permit; and
d. Sample. inspect or monitor at reasonable times. lor the purposes of assuring permil compliance or as otherwise authorized by the Clean Water Act, any substances or parameters at any location.

SECTION D - REPORTING REQUIREMENTS

1. Planned Changes

The permittee shall give notice and provide plans and specification to the Director lor review and approval prior to any planned physical alterations or additions to the permitted facilty. Notice is required only when:
For Industrial Dischargers
a. The alteration or addition to a permitted lacility may meet one of the criteria for determining whether a lacility is a new source in 40 CFR Part 122.29 (b).
b. The alleration or addition could significantly change the nalure or increase the quantity of pollutants discharged. This notification applies to pollulants which are subject neither to effluent limitations in the permit, nor to notification requirements under 40 CFR Part 122.42(a)(1).

For POTW Dischargers:

c. Any change in the facility discharge fincluding the introduction of any new source or significant discharge or signilicant changes in the quantity or quality of existing discharges of pollutants) must be reported to the permitting authority. In no case are any new connections. increased flows, or signilicant changes in influent quality permitted that will cause violation of the eflluent limitations specilied herein.
2. Anticipated Noncompliance

The permittee shall give advance notice to the Director of any planned changes in the permitted lacility or activity which may result in noncompliance with permit requirements.
3. Transfers

The permitis nontransferable to any person excepl alter notice to the Director. The Director may require modification or revocation and reissuance of the permit to change the name of the permittee and incorporate sach other requirements as may be necessary under the Act.
4. Monitoring Reports

Montoring results shall be reported at the intervals and in the form specilied in Part IIC5. (Reporting). Discharge Monitoring Reports must be submitted even when no discharge occurs during the reporting period
5. Compliance Schadule

Reports ol compliance or noncompliance with, or any progress reports on, interim ond linal requirements contained in any compliance schedule of this permit shall be submitted no later than 14 days following each schedule date. Any reports of noncompliance shall include the cause of noncompliance. any remedial actions taken, and the probability of meeting the nexl scheduled requirement.
6. Iwenty - four Hour Report
a. The permiltee shall report any noncompliance which may endanger health or the envronment Any information sha!l be provided orally wiltur 24 hours fron the lime the permittee becomes aware ol the circumstances. A written submusson shall also be provided within S days of the ume the permittee becomes aware of the circumstances. The written submission shall contain the lollowing information:
(I) a description of the noncompliance and its cause:
(2) the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected. the anticipated time it is expected to continue; and
(3) steps taken or planned to reduce, eliminate and prevent reoccurrence of the noncompliance.
b. The following shall be included as information which must be reported within 24 hours:
(I) Any unanticipated bypass which exceeds any ellluenl limitation in the permit:
(2) Any upsel which exceeds any effluent limitation in the permit; and
(3) Violation of a maximum daily discharge limitation tor any of the pollutants listed by the Director in Part Ill of the permit to be reported within 24 hours.
c. The Director may waive the written report on a case-by-case basis if the oral report has been received within 24 hours.
7. Other Moncompliance

The permittee shall report all instances of noncompliance not reported under Part II. $0.4,5$, and 6 . at the time monitoring reports are submitted. The reports shall contain the information listed at Part II.0.6.
8. Changes in Discharge of Toxic Substances for Industrial Dischargers

The permittee shall notily the Director as soon as he/she knows or has reason to believe:
a. That any activily has occurred or will occur which would resull in the discharge. in a routine or Irequent basis, of any toxic poltutant which is not limited in the permit, if that discharge will exceed the highest of the "notification levels" described in 40 CFR Part 122.42(a)(2)|48 FR 14153, April 1983, as amended at 49 FR 38046, September 26, 1984|.
b. That any activity has occurred or will occur which would result in any discharge, on a non-routine or infrequent basis, of a toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the "notification levels" described in 40 CFR Part 122.42(a)(2)[48 FR 14153. April 1. 1983, as amended at 49 FR 38046. Seplember 26, 1984].
9. Duty to Provide Information

The permittee shall Iurnish to the Director, within a reasonable time, any information which the Director may request to determine whether cause exists lor modilying, revoking and reissuing, or terminating this permit, or to detemine compliance with this permit. The permittee shall also furnish to the Director, upon request copies of records required to be kept by this permit Information shall be submitted in the form, manner, and time Irame requested by the Director.
10. Duty to Reapply

If the permittee wishes to continue an activity regulated by this permit alter the expiration date of this permit, the permittee must apply for and oblain a new permit. The complete application shall be submitted at least 180 days belore the expiration date af this permit. The Director may grant permission to submit an application less than 180 days in advance but no later than the permil expiration date. Continuation of expiring permits shall be governed by regulations promulgated in ROPCE Regulation No. 6.
11. Signatory Requirements

All applications, reports or information submitted to the Director shall be signed and certified.
a. All permit applications shall be signed as follows:
(1) For a corporation: by a responsible corporate officer. For the purpose of this section. a responsible corporate officer means:
(i) A president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs sumilar policy or decision-making functions lor the corporation, or
(ii) the manager of one or more manulacturng. production, or operating facilities employing more than 250 persons or having gross annual sales or expenditures exceeding $\$ 25$ million fin second quarter 1980 dollars), it authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures.
(2) For a partnership or sole proprietorship: by a general partner or the proprietor, respectively; or
(3) For a municipatily. State. Federal, or other public agency: by either a principal execulive olficer or ranking etected ollicial. For purposes of this section, a principal execultive officer of a Federal agency includes
(i) the chiel erecutive officer of the agency. or
(ii) A senor erecutive officer having responsibitity for the overall operations of a principal peographic unil of the agency.
b. All reports requrred by the permit and other information requested by the Director shall be signed by a person described above or by a duly authorized representative of that person. A person is a duly authorized representative only it:
(1) The authorization is made in writing by a person described above.
(2) The authorization specilied either an individual of a position having responsibility for the overall operation of the regulated lacillty or activity, such as the position of plant manager. operator of a well or a well lield. superintendent. or position of equivalent responsibility (A duly authorized representative may thus be either a named individual or any individual occupying a named positionl: and
(3) The written authorization is submitted to the Director.
c. Certilicalion Any person signing a document under this section shall make the Iollowing centification:
"I certily under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a syslem designed to assure that qualified personnel properily gather and evaluate the inlormation submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the inlormation, the information submitted is. to the best of my knowledge and beliel. true. accurate, and complete. I am aware that there are signiticant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."
12. Availability of Reports

Excepf for data determined to be confidential under 40 CFR Part 2 and Regulation 6. all reports prepared in accordance with the terms of this permit shall be available for public inspection at the offices of the Department ol Pollution Control and Ecology. As required by the Regulations, the name and address of any permit applicant or permitlee, permit applications. permits and eflluent data shall not be considered confidential.
13. Penalties for falsification of Reports

The Arkansas Aur and Water Pollution Control Act provides that any person who knowingly makes any lalse statement, representation, or certilication in any application, record, report, plan or other document filed or required to be maintained under this permil shall be subject to civil penalties specified in Part II.A.2. and/or criminal penallies under the authority of the Arkansas Water and Air Pollution Control Act (Act 472 of 1949, as amended).

PART III
OTHER CONDITIONS

1. Contributing Industries and Pretreatment Requirements
a. The permittee shall operate an industrial pretreatment program in accordance with Section $402(b)(8)$ of the Clean Water Act, the General Pretreatment Regulations (40 CER Part 403) and the approved POTW pretreatment program submitted by the permittee. The pretreatment program was approved on November 1, 1982. The permittee shall submit all necessary proposed modifications to the ADPC\&E per provisions set forth in the program's NPDES Tracking Permit AR0021806. The POTW pretreatment program is hereby incorporated by reference and shall be implemented in a manner consistent with the following requirements:
i. Industrial user information shall be updated at a frequency adequate to ensure that all IUs are properly characterized at all times.
ii. The frequency and nature of industrial user compliance monitoring activities by the permittee shall be commensurate with the character, consistency and volume of waste. However, in keeping with the requirements of 40 CER $403.8(f)(2)(v)$, the permittee must inspect and sample the effluent from each Significant Industrial User at least once a year. This is in addition to any industrial self-monitoring activities;
iii. The permittee shall enforce and obtain remedies for noncompliance by any industrial users with applicable pretreatment standards and requirements.
iv. The permittee shall control through permit, order, or similar means, the contribution to the POTW by each Industrial User to ensure compliance with applicable Pretreatment Standards and Requirements. In the case of Industrial Users identified as significant under 40 CFR 403.3(t), this control shall be achieved through permits or equivalent individual control mechanisms issued to each such user. Such control mechanisms must be enforceable and contain, at a minimum, the following conditions:
(1) Statement of duration (in no case more than Eive years;
(2) Statement of non-trarsferability wiurout, at a minimum, prior notificalion to the POTW and provision of a copy of the existing control mechanism to the new owner or operator;
(3) Effluent limits based on applicable general pretreatment standards, categorical pretreatment standards, local limits, and State and local law;
(4) Self-monitoring, sampling, reporting, notification and recordkeeping requirements, including an identification of the pollutants to be monitored, sampling location, sampling Erequency, and sample type, based on the applicable general pretreatment standards in 40 CFR 403 , categorical pretreatment standards, local limits, and State and local law;
(5) Statement of applicable civil and criminal penalties for violation of pretreatment standards and requirements, and any applicable compliance schedule. Such schedules may not extend the compliance date beyond federal deadlines.
v. The permittee shall evaluate, at least once every two years, whether each Significant Industrial User needs a plan to control slug discharges. If the POTW decides that a slug control plan is needed, the plan shall contain at least the minimum elements required in 40 CER 403.8 (f)(2)(v).
vi. The permittee shall provide adequate staff, equipment, and support capabilities to carry out all elements of the pretreatment program; and,
vii. The approved program shall not be modified by the permittee without the prior approval of the Department.
© The permittee shall establish and enforce specific limits to implement the provisions of 40 CER Parts 403.5 (a) ard (b), as required by 40 CER Part $403.5(c)$. Each POTW with an approved pretreatment program shall continue to develop these limits as necessary and effectively enforce such limits.

In accordance with EPA policy and with the requirements of 40 CER Part 403.8 (f) (4) and 40 CER Part 403.5 (c), the permittee shall conduct a headworks analysis to determine if technically based local limits are necessary to implement the general and specific prohibitions of 40 CER Parts 403.5(a) and (b). This evaluation should be conducted in accordance with the latest revision of the EPA "Region 6 Technically Based Local Limits Development Guidance", and after review of the "Guidance Manual on the Development and Implementation of Local Discharge Limitations Under the Pretreatment Program" December, 1987. Local limits must be revised and submitted to ADPC\&E in approvable form based upon the findings of the technical evaluation per the provisions set forth in the Program's NPDES Tracking Permit AR0021806. At the same time, a draft Sewer Use Ordinance including the proposed, modified local limits and any necessary portions updated to come into compliance with current General Pretreatment Regulations (40 CFR 403) must be submitted. Additional modifications to the Pretreatment Program, including an Enforcement Response Plan, must also be submitted at this time.

All specific prohibitions or limits developed under this requirement are deemed to be conditions of this permit. The specific prohibitions set out in 40 CFR Part 403.5 (b) shall be enforced by the permittee unless modified under this provision.
c. The permittee shall analyze the treatment facility influent and effluent for the presence of the toxic pollutants listed in 40 CER 122 Appendix D (NPDES Application Testing Requirements) Table II at least twice per year and the toxic pollutants in Table III at least four times per year. If, based upon information available to the permittee, there is reason to suspect the presence of any toxic or hazardous pollutant listed in Table V, or any other pollutant, known or suspected to adversely affect treatment plant operation, receiving water quality, or solids disposal procedures, analysis

for those pollutants shall be performed at least four times per year on both the influent and effluent.
i. The influent and effluent samples collected shall be composite samples consisting of at least 12 aliquots collected at approximately equal intervals over a representative 24 hour period and composited according to flow. Sampling and analytical procedures shall be in accordance with guidelines established in 40 CFR 136. Where composite samples are inappropriate, due to sampling, holding time, or analytical constraints, at least 3 grab samples, taken at equal intervals over a representative 24 hour period, shall be taken.
d. The permittee shall prepare annually a list of Industrial Users which during the preceding twelve months were in significant noncompliance with applicable pretreatment requirements. For the purposes of this Part, significant noncompliance shall be determined based upon the more stringent of either criteria established at 40 CER Part 403.8(f) (2) (vii) [rev. 7/24/90] or criteria established in the approved POTW pretreatment program. This list is to be published annually in the largest daily newspaper in the municipality during the month of March.

In addition, during the month of March the permittee shall submit an updated pretreatment program status report to $A D P C \& E$ containing the following information:
i. An updated list of all significant industrial users. For each industrial user listed, the following information shall be included:
(1) Standard Industrial Classification (SIC) code and categorical determination.
(2) Control document status. Whether the user has an effective control document, and the date such document was last issued, reissued, or modified, (indicate which industrial users were added to the system (or newly identified) within the previous 12 months).
(3) A summary of all monitoring activities performed within the previous 12 months. The following information shall be reported:
(a) total number of inspections performed:
(b) total number of sampling visits made;

Status of compliance with both effluent limitations and reporting requirements. Compliance status shall be defined as follows:
(a) Compliant (C) - no violations during the previous 12 month period;
(b) Non-compliant (NC) - one or more violations during the previous 12 months but does not meet the criteria for significant noncompliant industrial users.
(C) Significant Noncompliance (SN) - in accordance with requirements described in d. above.
(5) For significantly noncompliant industrial users, indicate the nature of the violations, the type and number of actions taken (notice of violation, administrative order, criminal or civil suit, fines or penalties collected, etc.) and current compliance status. If ANY industrial user was on a schedule to attain compliance with effluent limits, indicate the date the schedule was issued and the date compliance is to be attained.
ii. A list of all significant industrial users whose authorization to discharge was terminated or revoked during the preceding 12 month period and the reason for termination.
iii. A report on any interference, pass through, upset or POTW permit violations known or suspected to be caused by industrial contributors and actions taken by the permittee in response.
iv. The results of all influent, effluent analyses performed pursuant to paragraph (1) (c) above;
v. A copy of the newspaper putidication of the significantly noncompliant industrial users giving the name of the newspaper and the date published; and
vi. The information requested may be submitted in tabular form as per the example tables provided for your convenience (See Attachments A, B and C); and
vii. The monthly average water quality based effluent concentration necessary to meet the state water quality standards as developed in the approved technicallybased local limits.
e. The permittee shall provide adequate notice to the Department of the following:
i. Any new introduction of pollutants into the treatment works from an indirect discharger which would be subject to Section 301 and 306 of the Act if it were directly discharging those pollutants; and
ii. Any substantial change in the volume or character of pollutants being introduced into the treatment works by a source introducing pollutants into the treatment works at the time of issuance of the permit.

Adequate notice shall include information on (i) the quality and quantity of effluent to be introduced into the treatment works, and (ii) any anticipated impact of the change on the quality or quantity of effluent to be discharged from the POTW.

It is advised that the influent and effluent samples are collected considering flow detention time through each plant. Analytical MQLs should be used so that the data can also be used for Local Limits assessment and NPDES application purposes.
${ }^{2}$ Monthly average effluent level is based on State Water Quality s' ndards and implementation procedures.
${ }^{3}$ Indicate reported units of measurement
4 Record the names of any pollutants [40 CER 122, Appendix D, Table I I andfor Table $V \mid$ detected and the quantity in which they were detected.
\therefore The opetator of this wastewater treatment facility shall be licensed by the State of Arkansas in accordance with Act 211 of 1971, Act 1103 of 1991, Act 556 of 1993, and Regulation No. 3 , as amtinded.
3. Any sludge generated from the treatment process shall be stored and/or disposed of in a manner approved by this Department, and in accordance with Part II B6 herein. Written authorization from the facility or facilities where sludge is to be disposed must accompany each request for Department approval.
4. The permittee, at all times, shall handle and dispose of sewage sludge in such a manner so as to protect public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants which may be present.
5. If an applicable "acceptable management practice" or numerical limitations for pollutants in sewage sludge promulgated under Section $405(\mathrm{~d})(2)$ of the Act is more stringent than the sludge pollutant limits or acceptable management practice in this permit, or controls a pollutant not listed in this permit, this permit shall be promptly modified or revoked and reissued to conform to the requirements promulgated under Section 405(d) (2). The permittee shall comply with the limitations by no later than the compliance deadline specified in the applicable regulation as required in Section $405(\mathrm{~d})(2)(\mathrm{D})$ of the Act.
6. Produced sledges shall be disposed of by land application only when meeting the following criteria:
a. Sewage sludge from treatment works treating domestic sewage (TWTDS) must meet the applicable provisions of 40 CER Part 503 on the respective compliance date of the federal regulation;
b. The sewage sludge which has not been classified as a hazardous waste under state or federal regulations;
c. Under the terms and conditions of a NPDES permit, if issued by EPA; and
d. A separate state "no discharge" permit authorizing land application of sewage sludge and containing additional state requirements. (If ADPCE receives authorization to issue NPDES permits containing Part 503 requirements, the

NEDES permit issued by ADPCE will contain the additional state requirements and a separate state "no discharge" permit will no longer be necessary).
i. The permittee shall give at least 120 days prior notice to the Director of any change planned in the permittee's sludge disposal practice or land use applications, including types of crops grown (if applicable).
8. For publicly owned treatment works, the 30 -day average percent removal for Biochemical Oxygen Demand and Total Suspended Solids shall not be less than 85 percent unless otherwise authorized by the permitting authority in accordance with 40 CFR 133.102, as adopted by reference in ADPC\&E Regulation No. 6.
9. The permittee shall not cause or allow the permitted facility to emit odors which unreasonably interfere with enjoyment of life or use of property in the surrounding area.
10. Chronic Biomonitoring Requirements
a. Scope

The permittee shall test Outfall 001 for toxicity in accordance with the provisions in this section. Such testing will determine if an effluent sample dilution affects the survival and/or reproduction or growth of the appropriate test organism.

The first toxicity test must be initiated within 60 days from the effective date of the permit and the results of the test submitted with the first Discharge Monitoring Report (DMR) following completion of the toxicity test. However, if lethality is demonstrated for either test organism in any toxicity test required by this permit, the test results must be submitted to the Department within 15 days of receipt of results.

The toxicity tests specified herein shall be conducted once per quarter.
b. Definitions

Toxicity is herein defined as a statistically significant difference at the 95% confidence level between the survival, reproduction or growth of the appropriate test
wrganism in a specified effluent dilution and the control (0\%effluent).

Irethality, a component of loxicity, is herein defined as ${ }^{d}$ statistically significant difference at the 95% confidence level between the survival of the appropriate test organism in a specified effluent dilution and the control (0 effluent).

Significant nonlethal effect, a component of toxicity, is herein defined as a statistically significant difference at the 95% confidence level between the reproduction or growth of the appropriate test organism in a specified effluent dilution and the control $(0 \%$ effluent).

Toxicity Reduction Evaluation (TRE) is an evaluation intended to determine those actions necessary to achieve compliance with water quality-based effluent limitations by reducing an effluent's toxicity or chemical concentration(s) to acceptable levels. A TRE is defined as a step-wise process which combines toxicity testing and analyses of the physical and chemical characteristics of a toxic effluent to identify the constituents causing effluent toxicity and/or determine the treatment methods which will reduce the effluent toxicity.

c. Test Methods

All test organisms, procedures, and quality assurance requirements used shall be in accordance with the latest revision of "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms", EPA/600/4-89/001, or the most recent update thereof, unless specified otherwise in the permit. The following tests shall be used:
i. Chronic static renewal survival and reproduction test using Ceriodaphnia dubia (Method 1002.0). This test should be terminated when 60% of the surviving females in the control produce three broods.
ii. Chronic static renewal 7-day larval survival and growth test using fathead minnow (Pimephales promelas) (Method 1000.0). A minimum of five (5) replicates with eight (8) organisms per replicate must be used for this test.
d. Test Acceptance
i. The toxicity test control ($0 \frac{\%}{5}$ effluent) must have a survival equai to or greater than 80%. Should the control survival be less than 80% the toxicity test, including control and all effluent dilutions, shall be repeated.
ii. The mean number of Ceriodaphnia dubia neonates produced per surviving female in the control 10% effluent) must be 15 or more. Should the control neonate production be less than 15, the toxicity test, including control and all effluent dilutions, shall be repeated.
iii. The average weight of surviving fathead minnow larvae at the end of the 7 days in the control 10% effluent) must be 0.25 mg or greater. Should the average larval weight be less than 0.25 mg , the toxicity test, including control and all effluent dilutions, shall be repeated.
iv. The percent coefficient of variation between replicates shall be 40% or less in the control 10% effluent) for:
(1) the young of surviving females in the Ceriodaphnia dubia reproduction test;
(2) fathead minnow growth test; and
(3) fathead minnow survival test.
v. The percent coefficient of variation between replicates shall be 40% or less for the low flow dilution (critical dilution) for ADPC\&E to agree with a finding of no toxicity for these dilutions:
vi. If the permittee has conducted toxicity testing prior to the effective date of the permit in accordance with the provisions of this section, the test results may be submitted to ADPCE for approval. If approved, the test(s) will constitute partial fulfillment of the toxicity testing requirements of the permit.
e. Statistical Interpretation
i. Eor the Ceriodaphnia dubia survival test, the statistical analyses used to determine if there is a significant difference between the control and the low flow dilution shall be Fisher's Exact Test as described in the "Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving waters to Freshwater Organisms", EPA/600/4-89/001, or the most recent update thereof.
ii. Eor the Ceriodaphnia dubia reproduction test and the fathead minnow larval survival and growth test, the statistical analyses used to determine if there is a significant difference between the control and the low flow (critical dilution) effluent concentration shall be in accordance with the methods for determining the No Observed Effect Concentration (NOEC) as described in the "ShortTerm Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms", EPA/600/4-89/001, or the most recent update thereof.
f. Dilution Series

Five dilutions in addition to a control (0% effluent) composed of the same water as the dilution water, shall be used in the toxicity tests. These additional effluent dilutions shall be $4 \%, 5 \%, 8 \%, 10 \%$, and 13%. The lowflow effluent concentration (critical dilution) is defined as 10% effluent.
g. Dilution Water

Dilution water used in the toxicity tests will be receiving water from the Arkansas River collected as close to the point of discharge as possible but unaffected by the discharge. If there is no receiving water due to zero flow conditions, the permittee may substitute synthetic dilution water.

If the receiving water is unsatisfactory as a result of preexisting instream toxicity (fails to fulfill the criteria of lo.d above, or for other reasons substantiated by the permittee) synthetic dilution water may be substituted for the receiving water, provided the following stipulations are met:
i. a synthetic dilution water control is run;
ii. the synthetic dilution water Eulfills the requirements of $10 . d$;
iii. A receiving water control is run concurrently with the test (provided sufficient receiving water is available), until receiving water toxicity is adequately documented to the Department.
iv. the permittee submits all test results indicating receiving water toxicity with the report and information required by item $10 . m$ and the Discharge Monitoring Report (DMR) ; and
v. the synthetic dilution water shall have a pH , hardness and alkalinity similar to that of the receiving water and shall be prepared in accordance with the procedures in EPA/600/4-89/001 using ecoregion water characteristics as follows:

For discharges located in the Gulf Coastal, Arkansas River Valley, Boston Mountains, or Ouachita Mountains Ecoregions, and discharges to the Ouachita River, use SOFT water:

For discharges located in the Delta or Ozark Highlands Ecoregions, and discharges to the white, Arkansas, Mississippi, and St. Erancis Rivers, use MODERATELY HARD water:

For discharges to the Red River, use HARD water.
Synthetic dilution water may be used in all subsequent tests for both test species provided all of the above stipulations are met.
h. Samples and Composites

A minimum of three flow-weighted 24 -hour composite samples representative of the dry weather flows during normal operation will be collected from Outfall 001. A 24-hour composite sample consists of a minimum of twelve (12) effluent portions collected at equal time intervals and combined proportional to flow or a sample continuously collected proportional to flow over a 24hour operating day.

The 24-hour composite samples must be collected such thal the samples include any periodic episode of chlorination, use of a biocide or other potentially toxic substance discharged on an intermittent basis.
i. When collecting composite samples for toxicity testing, the permittee shall also analyze effluent for all parameters as specified in Part 1 , Section A of this permit. These analyses may be utilized as those required in Part 1, Section A for the monitoring period encompassing the toxicity test or may be in addition to the requirements of Part 1 , Section A, at the permittee's discretion. The results of these analyses shall be included in the reports required in item $10 . \mathrm{m}$ below.

The 24 -hour composite samples must be collected so that the maximum holding time for any effluent sample shall not exceed 72 hours. The toxicity test must be initiated within 36 hours after the collection of the last portion of the first 24 -hour composite sample. Samples shall be chilled to 4 degrees centigrade during collection, shipping and/or storage.

If the flow from the outfall 001 being tested ceases during the collection of effluent samples, the requirements for the minimum number of effluent samples, the minimum number of effluent portions and the sample holding time are waived during that sampling period. However, the permittee must collect an effluent composite sample volume that is sufficient to complete the required toxicity tests with daily renewal of effluent.
j. Low Elow Lethality Testing - Special Conditions

The requirements of this subsection (10.j) apply only when a toxicity test at the 10% effluent concentration demonstrates lethality.
i. The permittee shall conduct a total of two additional tests (retests) for any species that demonstrates significant lethal effects at the 10% effluent concentration. The retests shall be conducted monthly during the next two consecutive months. The permittee shall not substitute a retest in lieu of routine toxicity testing, unless the specified testing frequency for the species
demonstrating significant lethal effects is monthly. All retest data shall be submitted within 15 days of each test completion.
ii. If the results of the increased testing indicate lethality in the effluent at low flow dilution, the permittee shall submit a plan for a Toxicity Reduction Evaluation (TRE) and shall continue toxicity testing at a frequency of once per month for the species showing lethality, using the sample protocols as specified above until notified otherwise by the Department. The TRE plan, including a proposed implementation schedule, shall be submitted to the Department within 60 days of receipt of the results of the verification testing showing a lethal effluent. The plan will be reviewed by the Department. If deemed acceptable, the permittee shall be notified and the TRE plan shall become a requirement of this permit. Incomplete or unsatisfactory TRE plans and/or schedules will be returned to the permittee for correction of deficiencies. Failure to correct identified deficiencies within 30 days shall be considered a violation of this permit.
iii. The permittee shall conduct the TRE in accordance with the approved schedule and, upon completion, the permittee shall prepare a report which contains, at a minimum:
(1) the source of the toxicity (e.g. constituents; class of toxicants, suspected industrial contributors, etc.);
(2) results of any treatability studies conducted;
(3) discussion of alternative treatment or management techniques to reduce or eliminate toxicity;
(4) selection of the appropriate course of action to be followed by the permittee;
(5) an implementation schedule for making any required changes to reduce/eliminate toxicity.
iv. Upon completion of the TRE, the permittee shall select an appropriate course of action to reduce or eliminate the toxicity, and shall submit an application for modification of this permit, if applicable, including a proposed schedule for accomplishment. Additionally, if recommended solutions include construction or modification of the treatment system, an application for a construction permit shall also be submitted. The above applications shall be submitted within 90 days of completion of the TRE.
v. If none of the retests demonstrate significant lethality, the permittee shall return to the testing frequency specified in item 10.a.
k. Low Flow Nonlethal Effects Testing - Special Conditions

The requirements of this subsection (10.k) apply only when a toxicity test demonstrates a significant nonlethal effect at the 10% effluent concentration, and the test does not demonstrate a significant lethal effect as described in item 10.j. above.
i. Quarterly or Semi-Annual Testing: If the frequency of testing specified in this permit is quarterly or semi-annual, the permittee shall conduct a total of two (2) additional tests (retests) for the species that demonstrated the significant nonlethal effects. The retests shall be conducted monthly during the next two consecutive months. The permittee shall not substitute a retest in lieu of routine toxicity testing. If one of the retests shows significant non-lethal effects at the 10% effluent concentration, the permittee may suspend the retesting for this reporting period and shall notify ADPCE in writing. All retest results shall be submitted to ADPCE within fifteen (15) days of test completion. After submitting the results which demonstrate significant non-lethal effects in one of the retests, and at the discretion of ADPCE, the permittee may be required to biomonitor for both species at an increased frequency of once per month for twelve (12) consecutive months; however, as a minimum, the permittee shall be required to biomonitor at least once per six (6) months for the remainder of the permit duration. The duration and
frequency of biomonitoring will be stated in writing to the permittee.

If none of the retests demonstrate significant toxicity (lethal and nonlethal effects), the permittee shall return to the original testing frequency until fulfillment of the Eirst year testing requirements. After the completion of the first year requirements, the permittee shall continue testing at a frequency of once per six (6) months.
ii. Monthly Testing: If the frequency of testing specified in item lo.a. is monthly, the permittee will continue testing monthly until the completion of the first year requirement and then test at a frequency of once per six (6) months for the duration of the permit.

1. No Toxicity Certification

If the toxicity tests for specific test organism(s) do not indicate toxicity at the 10% effluent concentration during the first year or four consecutive test (whichever occurs later), the permittee shall certify this information in writing to ADPCE, and the biomonitoring requirements for that organism(s) may be reduced upon written authorization by the Department.
m. Reporting
i. The permittee shall prepare a full report of the results according to the Report Preparation Section of "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms". The full report must be submitted with the first DMR containing these biomonitoring results. Subsequent reports accompanying DMRs need include only sections 9.4 (Test Methods) and 9.7 (Results) of the full report prepared for the appropriate toxicity test, unless the full report is specifically requested by ADPCE. However, the full report shall be retained pursuant to the provisions of Part II.C. 7 of this permit.
ii. The permittee shall submit the toxicity testing information contained in the summary sheet provided by ADPCE along with the DMR submitted for the end of the reporting period following each toxicity test.
n. Permit Reopener Conditions

This permit may be reopened to require effluent limits, additional testing, and/or other appropriate actions tó address toxicity. Accelerated or intensified toxicity testing and/or a TRE may be required in accordance with Section 308 of the Clean Water Act, and the Arkansas Water and Air Pollution Control Act (Act 472 of 1949, as amended).
o. Total Residual Chlorine

Total residual chlorine (TRC) in the effluent composite sample shall be measured and reported both at the time of sample termination and at the time of toxicity test initiation. The permittee shall ensure that the effluent composite used in toxicity testing is representative of normal facility residual chlorine discharge concentration.

11.

Metals Monitoring Requirements

This permit may be reopened to include numeric limitations for Silver, additional testing, and/or other appropriate actions.

If any individual analytical test result is less than the minimum quantification level listed below, a value of zero (0) may be used for that individual result for the Discharge Monitoring Report (DMR) calculations and reporting
requirements.

Pollutant	EPA Method	MQL $(\mu \mathrm{g} / \mathrm{l})$
Silver, Total Recoverable	272.2	2

The permittee may develop a matrix specific method detection limit (MDL) in accordance with Appendix B of CER Part 136. Eor any pollutant for which the permittee determines a site specific MDL, the permittee shall send to ADPC\&E, NPDES

Uermits Branch, a report containing $Q A / Q C$ documentation, analytical results, and calculations necessary to demonstrate that a site specific MDL, was correctily caloculated. A site sperific minimum quantification level (MQL) shall be determined in accordance with the following calculation:

$$
M Q L=3.3 \times M D L
$$

Upon written approval by the NPDES Permits Branch, the site specific MQL may be utilized by the permittee for all future Discharge Monitoring Report (DMR) calculations and reporting requirements.

12. CONDITIONS FOR LAND APPLICATION OF SLUDGE

A. Land Application of Municipal Sewage Sludge

In addition to applicable requirements of 40 CFR Part 503 as promulgated by the U.S. Environmental Protection Agency, permittee desiring to land apply municipal sewage sludge will comply with the following additional state requirements.
B. General Requirements:

1. Only sludge which is not classified as a hazardous waste under state or federal regulations may be land applied as fertilizer.
2. Plant Available Nitrogen (PAN) shall not be applied at a rate exceeding the annual nitrogen uptake of the crop. At no time shall the nitrogen application rate (PAN/acre-year) be allowed to exceed the site specific rate approved by the Department.
3. Sludge with Polychlorinated Biphenyls (PCB) concentration greater than or equal to $50 \mathrm{mg} / \mathrm{kg}$ dry weight shall not be land applied at any time.
C. Monitoring and Reporting Requirements for all Sludge Application Eacilities:
4. The permittee shall be responsible for a sludge analysis, soil analysis, and reporting program which includes the following:
A. Sludge Analysis
(1) Sludge samples collected must bo representative of the treated sludge to be land applied. The samples are to be stored in appropriate glass or plastic containers and kept refrigerated or frozen to prevent any change in nutritional value.
(2) Quarterly grab samples of the land applied sludge shall be analyzed and reported in dry weight (mg/kg) for:
\% Volatile Solids Total Kjeldahl
\% Total Solids
Total Phosphorus
Total Potassium
Nickel
Nitrite Nitrogen
rita Nitrogen
Cadmium
Copper
Lead
Arsenic

Mercury

Selenium Zinc pH
(3) Annual grab samples of the land applied sludge shall be analyzed for Polychlorinated Biphenyls (PCB).
(4) Soils Analysis

Each land application site shall be soil tested in the Spring prior to application for the following parameters:

Nitrate-Nitrogen Potassium
Phosphorus Nickel
Magnesium Cadmium
pH
Copper
Lead
Copper Zinc
Arsenic Selenium Mercury
b. Reporting
(1) Annual reports shall be sent to the Department and to the owner of the land receiving sludge prior to May 1, which must include the following:

The sludge and soil analyses conducted under section B.l.a. above (including a statement that the analyses were performed in accordance with EPA Document SW-846, "Test Methods for Evaluation of Solid Waste," or other procedures approved by the Director), application dates and locations, volumes of sludge applied (in dry tons/acre-year and gallons/acre-year of sludge), methods of disposal, identity of hauler, and type of crop grown, amounts of nitrogen applied, total metals added that year (lbs/acre), total metals applied to date, and copies of soil analyses for each site.
(2) The permittee shall also maintain copies of the above records for Department personnel review at the sludge production facility.
(3) Permittee shall forward a copy of all reports required by 40 CER Part 503 or required by a NPDES permit issued by EPA to the Director, ADPCE, when such reports are submitted to EPA.
D. Additional Requirements For The Land Application of Sludge on Any Land:

1. The permittee shall be responsible for assuring that the land owner of any land application site not owned by the permittee and the waste applicator if different from the permittee abides by the conditions of this permit.
2. Storage facilities (at production facility or disposal site) are required to store sludge during periods of inclement weather, equipment breakdown, frozen or snow-covered ground, during periods of inactive plant growth, or when access would damage the field or crop. Disposal site storage must be limited to less than ten (10) days unless the sludge is covered and a seepage barrier provided.
3. In the event that storage is exceeded and sludge cannot be land applied, sludge shall be disposed of by an alternative method approved by the Director.
4. Sludge shall be spread evenly over the application area and in no way shall sludge be allowed to enter the waters of the State.
5. Sludge shall not be applied to slopes with a gradient greater than 15%; or to soils that are saturated, frozen or covered with snow, and during rain or when precipitation is imminent.
6. The permittee shall not cause any underground drinking water source to exceed the limitations in 40 CER 257 Appendix I.
7. The permittee shall not cause or contribute to the taking of life or the destruction or adverse modification of the critical habitat of any endangered or threatened species of plant, fish or wildlife.
8. The permittee shall take all necessary measures to reduce obnoxious and offensive odors. Equipment shall be maintained and operated to prevent spillage and leakage.
9. Disposal of sewage sludge in a floodplain shall not restrict the flow of the base flood, reduce the temporary storage capacity of the floodplain, or result in a washout of solid waste, so as to pose a hazard to human life, wildlife or land and water uses.
10. The permittee shall give at least 120 days prior notice to the Director of any change planned in the sewage sludge disposal practice.
11. All new land application sites must have a management plan approved by the Department prior to land application of sewage sludge.
Form Approvod.
OMB No. 2040.0004 .
Approval oxpleos 6.30
D OISEMAMEEMUMAEA
PRERMITNUME

NO.	rasouicner	18

PART IV -
 SECTION A - DEFINITIONS

All delimutions contained in Section 502 of the Clean Water Act shall apply to this permit and are ancorporated herein by reference. Additional definitions of words or phra ses used an this permit are as follows:

1. "Act" means the Clean Water Act, Public Law 95.217133. U.S.C. 1251 et seq las amended.
2. "Administrator" means the Administrator of the US Environmental Protection Agency
3. "Applicable effluent standards and limitations" means all Stale and Federal eflluent slandards and limitations to which a discharge is subject under the Act. includine but nol hmited to. eflluent limitations, standards of performance. toxic elluent standards and prohbitions, and pretreatment standards.
4. "Applucable waler quality standards" means all water quality standards to whicha discharge is subject under the lederal Clean Water Act and which have been (a) approved or permitted to remain in effect by the Administrator following submission to the Administrator pursuant to Section 303(a) of the Act, or (b) promulgated by the Director pursuant to Section 303(b) or 303(c) of the Act. and standards promulgated under regulation No .2 as amended, (regulation establishing water quality standards for surface waters of the State of Nikansas).
5. "Bypass" means the intentional diversion of waste streams Irom any portion of a treatment lacility.
6. Daily Discharge" means the discharge ol a pollutant measured during a calendar day or any 24 -hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in terms of mass. the "daily discharge" is calculated as the lotal mass of the pollutant discharged over the sampling day. For pollutants with limitations expressed in other units of measurement the "daily discharge" is calculated as the average measurement ol the pollutant over the sampling day. "Daily discharge" determination of concentration made using a composite sample stall be the concentration of the composile sample. When grat samples are used, the "daily discharge" determinalion of concentration shall be the arithmetic average (weighted by flow value) ol all the samples collected during that sampling day.
7. "Daily Average" (also known as monthly average) discharge limitations means the highest allowable average of "daily discharge(s)" over a calendar month. calculated as the sum of all "daily discharge(s)" measured during a calendar month divided by the number of "daily discharge(s)" measured during that month. When the permit establishes daily a verage concentration elfluent limitations or conditions. the daily average concentration means the arithmetic average (weighted by flow) of all "daily discharge(s)" of concentration determined during the catendar month where $\mathrm{C}=$ daily concentration, $\mathrm{F}=$ daily flow and $\mathrm{n}=$ number ol daily samples; daily average discharge $=$

$$
\frac{\mathrm{ClF1}+\mathrm{C} 2 \mathrm{~F} 2+\ldots \mathrm{CnFn}}{\mathrm{~F} 1+\mathrm{F} 2+\ldots+\mathrm{Fn}}
$$

8. "Daily Maximum" discharge limitation means the highest allowable "daily discharge" during the calendar month.
9. "Department" means the Arkansas Department of Pollution Control and Ecology (ADPCE.
10. "Director" means the Administrator of the U.S. Environmental Protection Agency and/or the Director of the Arkansas Department of Pollution Control and Ecology.
11. "Grab sample" means an individual sample collected in less than 15 minutes in conjunction with an instantaneous flow measurement.
12. "Industrial User" means a nondomestic discharger, as identified in 40 CFR 403. introducing pollutants to a publicly-owned Ireatment works.
13. "National Pollutant Oischarge Elimination System" means the national program for issuing, moditying, revoking and reissuing, terminating, monitoring and enforcing permits, and imposing and enforcing pretreatment requirements, under sections 307. 402. 318, and 405 of the Clean Water AcL
14. 'Porw' means a Publicly Owned Ireatment Works.

15 "Severe property damage" means substantial physical damage to property. damage to the treatment lacilities which causes them to become inoperable. or substantial and permanent loss of natural resources which can teasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in productions.

16 "ADPCE" means the Arkansas Department of Pollution Control and Ecology
11. "Sewage sludge" means the solids. residues. and precipitate separated from or crealed in sewage by the unil processes of a publicly-owned treatment works. Sewage as used in this delinition means any wastes. including wastes from humans, households. commercial establistments. industries, and storm water runoft, that are discharged to or otherwise enter a publicly-owned treatment works.
18 "7day average" dischurge limitation, other than for lecal collorm bacteria. is the highest allowable arithmetic means of the values lor all elliuent samples collected during the calendar week. The 7 day average for lecal colitorm bacteria is the peometric mean of the values of all etlluent samples collected during the calendar week. The DMR should report the highest 7 day average obtained during the calendar month for reporting purposes. the 7 -day average values should be reported as occurring in the month in which the Salurday of the calendar week lalls in.
19 "30-day average". other than for lecal coliform bacteria, is the arithmetic mean of the daily values lor all effluent samples collected during a calendar month. calculated as the sum of all daily discharges measured during a calendar month divided by the number of dally discharges measured during thal month. The 30 -day average lor lecal collorm bacteria is the geometric mean of the values for all elliuent samples collected during a calendar month.
20. "24-hour composite sample" consists of a minimum of 12 effluent portions collected at equal time intervals over the 24 -hour period and combined proportional to llow or a sample collected at Irequent intervals porportional to llow over the 24 -hour period.
21. "12-hour composite sample" consists of 12 ellluent portions collected no closer logether than one hour and composited according to flow. The daily sampling intervals shall include the highest flow periods.
22 "6-hour composite sample" consists of six effluent portions collected no closer together than one hour (with the first portion collected no earlier than $10: 00$ a m.) and composited according to flow.
23. "3-hour composite sample" consists of three effluent portions collected na closer logether than one hour (with the first portion collected no earlier than 10.00 am .) and composited according to flow.
24. "Treatment works" means any devices and syslems used in the slorage, treatment. recycling. and rectamation ol muncipal sewage and industrial wastes. of a liquid nature to implement section 201 of the Act. or necessary to recycle reuse water at the most economic cost over the estimated life of the works, including intercepting sewers. sewage collection systems, pumping. power and other equipment, and alterations thereof: elements essential to provide a reliable recycled supply such as standby treatment units and clear well tacilities, and any works, mncluding site acquisition of the land that will be an integral part of the treatment process or is used for ultimate disposal of residues resulting from such treatment
25. "Upset" means an exceptional incident in which there is unintentional and lemporary noncompliance with technology-based permit ellluent limitations because of laclors beyond the reasonable control of the permittee. Any upsel does not include noncompliance to the extent caused by operational error, impropenty designed treatment lacilities, lack of preventive maintenance. or careless or improper operations.
26. For "lecal coliform bacteria". a sample consists of one elfiluent grab portion collected during a 24 -hour period al peak loads.
27. "Oissolved oxygen". shall be delined as lollows:
a. When limited in the permil as a monthly minimum, shall mean the lowest acceptable monthly average value. determined by averaging all samples taken during the calendar month;
b. When limited in the permit as an instantaneous minimum value, shall mean that no value measured during the reporting period may fall below the stated value.
28. The term "MGO" shall mean mullion gallons per day.
29. The term "mg/l" shall mean milligrams per liter or parts per million (ppom)
30. The term " $\mu \mathrm{g} / \overline{\mathrm{l}}$ " shall mean micrograms per liter or parts per billion (opb).

> ORDINANCE NO. 18,232
> AN ORDINANCE ESTABLISHING A SCHEDULE OF SEWER RATES FOR THE LITTLE ROCK WASTEWATER UTILITY WITH THE EFEECTIVE DATE OF APRIL I, 2000, REPEALING ORDINANCE NO. 16, 456 (APPROVED JULY 6, 1993), EFEECTIVE APRIL 1, 2000, DECLARING AN EMERGENCY, AND FOR OTHER PURPOSES

WHEREAS, the authority to operate and maintain the Little Rock Wastewater Utility is vested in the Little Rock Sanitary Sewer Committee (the "Sewer Committee"), but the authority to establish sewer rates is vested in the Board of Directors of the City, and the Sewer Committee has determined and recommended to the City Board of Directors that the rates herein set forth) should be duly adopted by ordinance pursuant to law because the current sewer rates need to be adjusted; and,

WHEREAS, the Board of Directors finds that the rates proposed by the Sewer Committee and established herein are adequate to pay the principal of and the interest on sewer revenue bonds, to make payments into the sewer revenue bonds sinking fund, to provide an adequate depreciation fund and to Grovide the Little Rock Wastewater Utility's estimated cost of operating and maintaining the sewer system, including the cost of improvements; and,

WHEREAS, as a result of the comprehensive rate study performed in 1999, the need for an adjustment of rates was determined and the Sewer Committee has requested the adoption of rates reflected herein and has stated that the adjustments are necessary to cover the cost of the foregoing items herein.

NOW, THEREFORE, BE IT ORDAINED BY THE BOARD OF DIRECTORS OF THE CITY:

Section 1. That the following monthly rates are hereby established as rates to be charged for services furnished by the Utility, which rates the Board of Directors hereby find and declare to be reasonable and necessary minimum rates to be charged;
(a) The Sewer Committee shall compute separately for each customer (customer being hereby defined as any landowner whose buildings or premises are connected with and use the sewer system or otherwise discharge sanitary sewage, industrial waste, water or other liquids, either directly or indirectly into the sewer system) the monthly water consumption of each customer.
(b) In case of customers obtaining water exclusively from the Little Rock Municipal Water Works, the computation shall be based upon the water consumption records of the Little Rock Municipal Water Works.
(c) In the case of customers obtaining water from sources other than the Little Rock Municipal Water Works, the Sewer Committee shall determine the amount of water obtained by such customers from other sources and the amount so determined shall be used (together with the amount reflected by the Little Rock Municipal Water Works' records, if any said customer also obtained water from the Little Rock Municipal Water Works) in making the computation.
(d) In the case of customers whose water use is such that an appreciable quantity does not reach the sewer system, then the customer may be permitted by the Utility, upon written request to the utility, to have a meter installed for the purpose of determining the amount of such quantity not reaching the sewer system, provided, however, the meter shall be inspected and approved by the Utility. Upon written application to the Sewer Committee, if a customer can show by such an approved and inspected meter that an appreciable quantity of the water used by the customer did not reach the sewer system, then the computation upon which that customer's sewage charge is based shall be adjusted and determined in accordance with the measurement as indicated by the meter, but the burden of showing that an appreciable quantity of water usage does not reach the sewer system shall be upon the customer, and in no event shall
the customer be entitled to any adjustment for such water usage beyond twelve months from the date of the written application to the Sewer Committee.

In the case of water used for irrigation or lawn sprinkling purposes, the customer shall have an additional service meter installed by the Little Rock Municipal Water Works to deliver the water in such a way that the water is billed separately without a sewer charge being computed.
(e) The following rates shall be effective April 1,2000 and shall be applied to the monthly water consumption of each customer, as above determined, to arrive at the monthly charge for each customer:

(1) Service Availability Charge

	Rates	
	Effective April 1,2000	
Size Water Meter Eurnishing Water	Inside City Limits	Outside City Limits
$5 / 8^{\prime \prime}$	$\$ 3.00$	$\$ 4.50$
$3 / 4^{\prime \prime}$	$\$ 4.45$	$\$ 6.70$
$1^{\prime \prime}$	$\$ 7.40$	$\$ 11.10$
$11^{\prime \prime}$	$\$ 14.85$	$\$ 22.30$
$2^{\prime \prime}$	$\$ 23.75$	$\$ 35.60$
$3^{\prime \prime}$	$\$ 44.50$	$\$ 66.75$
$4^{\prime \prime}$	$\$ 74.20$	$\$ 111.30$
$6^{\prime \prime}$ or	$\$ 148.40$	$\$ 222.60$
larger		

(2) Volumetric Charge (for all water consumed)

	Effective April 1, 2000	
Volume of Water Consumed	Inside City Limits	Outside
City		
Per$100 ~ c u . ~$ ft	$\$ 1.50$	$\$ 2.25$

(3) Billing Charge Customers whose usage requires rendering a bill by means other than the Municipal Water Works' Data Processing Facilities shall pay a service charge of $\$ 5.00$ per bill in addition to all other charges.
(4) Delinquent Accounts All accounts for sewer service not paid within thirty (30) days of the billing date shall bear interest at the maximum rate permitted by law until paid in full.

Section 2. The following rates for extra strength charges and Liquid Waste Haulers are also established as rates which the Board of Directors further find and declare to be reasonable and minimum rates to be charged:
(a) The discharge of wastewaters having an excessive Biochemical Oxygen Demand (BOD) or Total Suspended Solids Content (TSS) or Oil and Grease Content (O\&G) constitute an added expense in the operation and maintenance of the utility's treatment facilities and should be accompanied by payment of an

Extra Strength Surcharge to compensate for this added expense. Excessive $B O D$ and/or TSS is hereby defined as in excess of 250 $m g / 1$, for either parameter, and excessive $O \& G$ is hereby defined as in excess of $50 \mathrm{mg} / \mathrm{I}_{\text {, }}$ as determined in accordance with test methods approved under 40 CER Part 136. The Extra Strength Surcharge shall be 10 cents per pound of BOD in excess of 250 $\mathrm{mg} / \mathrm{I}_{1} 9$ cents per pound of TSS in excess of $250 \mathrm{mg} / \mathrm{I}$, and 10 cents per pound of $O \& G$ in excess of $50 \mathrm{mg} / 1$. The Extra Strength Surcharge shall be computed separately for BOD, TSS and O\&G on the total discharge (consumption).
(b) There shall be a charge paid on domestic liquid waste (septage) delivered to Adams Field Treatment Plant which is discharged into the sewer system at the Plant, as follows: Cost Base $\quad \leq 1000 \mathrm{Gal}$. Charge $\$ 30.00$ $\$ 60.00$
(c) There shall be a charge paid on all approved sources of landfill leachate delivered to the Adams Field or pumped into the collection system of 10 cents per gallon.
(d) There shall be a charge paid on all approved sources of other liquid waste delivered to the Adams Field or pumped into the collection system of 20 cents per gallon.
(e) The following parameters are limited in concentration by the Sanitary sewer Committee through regulation
and/or Significant Industrial Users Discharge Permits: arsenic, cadmium, chromium, copper, cyanide, lead, pH, mercury, nickel, selenium, silver, TTO, zinc, and any other parameter limited by a discharge permit issued to the user.

Section 3. All bills for sewer service shall be rendered monthly. Under the provisions of A.C.A. $\$ 14-235-223$, if any sewer charge is not paid within thirty (30) days after same is due, suit may be brought to collect the amount due, together with a 10% penalty and a reasonable attorney's fee.

Section 4. Each user of the sewer system shall be notified, at least annually by publication in a newspaper having wide circulation in Pulaski County, Arkansas, in conjunction with a regular bill, of the rate and the portion of the user charges which are attributable to waste water treatment services, in compliance with 40 C.E.R. §35.929-2(f).

Section 5. That the provisions of this Ordinance are separable and, if a section, provision, or phrase shall be declared invalid, it shall not affect the validity of the remainder of this Ordinance.

Section 6. That all resolutions and ordinances and parts thereof in conflict with this ordinance including Ordinance No. 16, 456 (approved July 6, 1993) are repealed at the effective date of this Ordinance which is April 1, 2000.

Section 7. That it is hereby ascertained and declared that inadequate sewer rates will endanger the proper operation, maintenance, and continued improvement of the wastewater collection and treatment facilities of the City which are necessary in order to prevent a hazard to the public health, safety and welfare of the inhabitants of the City; and, therefore, an emergency is declared to exist and this Ordinance shall take effect on April 1, 2000; and, until that date, Ordinance No. 16,456, adopted July 6,1993 , shall remain in full force and effect.

PASSED: March 21, 2000

APPROVED:

ATTEST:

$\overline{\left(8 \vdash 9^{\prime} \varepsilon 66^{\prime} 1\right)}$

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& $$
\begin{gathered}
1999 \\
\text { ACTUAL }
\end{gathered}
$$ \& $$
\begin{gathered}
2000 \\
\text { BUDGET }
\end{gathered}
$$ \& $$
\begin{gathered}
2001 \\
\text { BUDGET } \\
\hline
\end{gathered}
$$ \& $$
\begin{gathered}
2002 \\
\text { PROJECTED } \\
\hline
\end{gathered}
$$ \& $$
\begin{gathered}
2003 \\
\text { PROJECTED } \\
\hline
\end{gathered}
$$ \& $$
\begin{gathered}
2004 \\
\text { PROJECTED } \\
\hline
\end{gathered}
$$ \& $$
\begin{gathered}
2005 \\
\text { PROJECTED } \\
\hline
\end{gathered}
$$

\hline \multicolumn{8}{|l|}{}

\hline ASSESSMENTS LEVIED \& 16,979,065 \& 19,035,250 \& 19,637,989 \& 19,769,564 \& 19,902,020 \& 20,035,364 \& 20,169,601

\hline industrial surcharge \& 485,075 \& 500.625 \& 545,131 \& 548,783 \& 552,460

252,313 \& 556,161 254.003 \& 559,887 255.705

\hline OTHER FEES AND INCOME \& 231,943 \& 278,125 \& 248,966 \& 250,634 \& 252,313 \& \&

\hline total operating income \& 17,696,083 \& 19,814,000 \& 20,432.086 \& 20.568.981 \& 20,706,793 \& 20,845,528 \& 20.985.193

\hline \& \& \& \& \& \& \&

\hline \multicolumn{8}{|l|}{OPERATING EXPENSE:}

\hline SUPPORT SERVICES \& 4,910,554 \& 4,759,227 \& 5,385,710 \& 5,547,281 \& 5,733,701 \& 5,885,114 \& 6,061,666

\hline OPERATIONS \& 3,647,799 \& 3,616,414 \& 4,109,205 \& 4,232,481 \& 4,359,456 \& 4,490,240 \& 4.624,947

\hline maintenance \& 4,732,852 \& 4,795,803 \& 5,822,609 \& 5,997,285 \& 6,177,203 \& 6,362,518 \& 6.553,393

\hline c.W.I.P. \& (1,124,997) \& (1,152,740) \& (1,141,348) \& (1.175.589) \& (1,210.857) \& (1.247.183) \& (11.284.598)

\hline TOTAL OPERATING EXPENSE \& 12,166,208 \& $\underline{12.018 .704}$ \& 14,176,176 \& 14.601.458 \& 15,039,503 \& 15,490,689 \& 15,955,408

\hline NET INCOME BEFORE DEPRECIATION \& 5.529,875 \& 7,795,296 \& 6,255.910 \& 5,967,523 \& 5.667.290 \& 5,354,839 \& 5,029,785

\hline FUNDED DEPRECIATION \& 9.348 \& 30.000 \& 75,000 \& 65,000 \& 50,000 \& 30,000 \& 10,000

\hline NON-FUNDED DEPRECIATION \& 4,105,289 \& 4,169.413 \& 4.688.153 \& 4,801,488 \& 4.903.496 \& 4.904,799 \& 5.083,883

\hline NET InCOME AFTER DEPRECIATION \& 1,415,238 \& 3.595,883 \& 1,492,757 \& 1,101,035 \& 713,794 \& 420,040 \& (64.098)

\hline \multicolumn{8}{|l|}{non-operating revenue:}

\hline INTEREST INCOME \& 442,976 \& 307,000 \& 425,000 \& 375.000 \& 350,000 \& 350,000 \& 50,000

\hline GAIN ON DISPOSAL OF PROPERTY \& 46,084 \& 5,000 \& 5,000 \& 5,000 \& 5,000 \& 5,000 \& 5.000

\hline miscellaneous \& 33,388 \& 6.000 \& 6.000 \& 6.000 \& 6,000 \& 6.000 \& 6.000

\hline INCOME BEFORE NON-OPERATING EXPENSES \& 1,937,686 \& 3,913,883 \& 1,928,757 \& 1.487,035 \& 1,074,794 \& 781,040 \& 296,902

\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{$\begin{array}{lllllll}\text { NON-OPERATING EXPENSES: } & & \\ \text { AMORTIATION. BOND DISC \& EXP } & 66,085 & 109,489 & 93,353 & 883\end{array}$}}

\hline \& \& \& \& \& \& \&

\hline INTEREST ON LONG-TERM DEBT \& 1,737,906 \& 1,744,616 \& 1,972.507 \& 1,973,688 \& 1,913,829 \& 1,849,434 \& 1,911,420

\hline LOSS ON DISPOSAL OF PROPERTY \& 16,177 \& - \& - \& - \& - \& - \& -

\hline EXTRAORDINARY LOSS -LITIGATION \& \& \& \& \cdot \& \cdots \& \cdots \&

\hline NET INCOME \& 117.518 \& 2.059.778 \& ${ }^{\text {(153.239) }}$ \& ${ }^{(575.525)}$ \& (923,251) \& $\underline{(1,163,414)}$ \& (1,709,701)

\hline
\end{tabular}

[^0]: Little Rock
 Citizens Advisory Group

[^1]: Notes: 1. "Contractors Project Operational Costs", accounts for Bonds, Permits, Insurance, 2. The ENR CCI for National Average (Construction Cost Index) for September 1998 is 5963. Temporary Facilities required, Etc., Etc.
 The ENR CCI for National Average (Con
 Estimated costs are presented in Septe

[^2]: 3/15/98 2:24 m

[^3]: | | 保 | TELEPHONE | | DATE | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | $5013376-2903$ | | 25 | 4 | $1 ;{ }^{\prime}$ |
 | | sIgNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT | | | | | |
 | | | AREA CODE | NUMBER | YEAR | MO | DAY |

 | R | YEAR MO | DAY |
 | :--- | :--- | :--- | :--- |

[^4]: There shall be no discharge of distinctly visible solids, scum or foam of a persistent nature, nor shall there be any formation of slime, bottom deposits or sludge banks.

 Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):at Outfall 001, after the final treatment unit.

